Skip to main content

Advertisement

Log in

Impact-Insertion Applicator Improves Reliability of Skin Penetration by Solid Microneedle Arrays

  • Brief/Technical Note
  • Published:
The AAPS Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47.

    Article  CAS  PubMed  Google Scholar 

  2. Roxhed N, Samel B, Nordquist L, Griss P, Stemme G. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng. 2008;55:1063–71.

    Article  PubMed  Google Scholar 

  3. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. Journal of Controlled Release. 2012;161:645–55.

    Article  CAS  PubMed  Google Scholar 

  5. Prausnitz MR, Gill HS, Park J-H. Microneedles for drug delivery. Modified Release Drug Delivery; 2008. p. 295–309.

  6. Singh TRR, Dunne NJ, Cunningham E, Donnelly RF. Review of patents on microneedle applicators. Recent Patents Drug Deliv Formulation. 2011;5:11–23.

    Article  CAS  Google Scholar 

  7. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–11.

    Article  CAS  PubMed  Google Scholar 

  8. Crichton ML, Ansaldo A, Chen X, Prow TW, Fernando GJP, Kendall MAF. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials. 2010;31:4562–72.

    Article  CAS  PubMed  Google Scholar 

  9. Donnelly RF, Garland MJ, Morrow DIJ, Migalska K, Singh TRR, Majithiya R, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release. 2010;147:333–41.

    Article  CAS  PubMed  Google Scholar 

  10. Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine. 2014;32:1856–62.

    Article  PubMed  Google Scholar 

  11. Maaden K, Yu H, Sliedregt K, Zwier R, Leboux R, Oguri M, et al. Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. J Mater Chem B. 2013;1:4466–77.

    Article  Google Scholar 

  12. Verbaan FJ, Bal SM, Van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008;128:80–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ding Z, Riet EV, Romeijn S, Kersten GFA, Jiskoot W, Bouwstra JA. Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res. 2009;26:1635–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011;3:473–81.

    Article  Google Scholar 

  15. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19:63–70.

    Article  CAS  PubMed  Google Scholar 

  16. Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A. 2008;105:2058–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Guo L, Chen J, Qiu Y, Zhang S, Xu B, Gao Y. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. Int J Pharm. 2013;447:22–30.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar A, Li X, Sandoval MA, Rodriguez BL, Sloat BR, Cui Z. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int J Nanomedicine. 2011;6:1253–64.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Stumber (Robert Bosch GmbH) for the supply of microneedles and Eleni Maria Varypataki and Stefan Romeijn for their help with the immunization study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke Bouwstra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Maaden, K., Sekerdag, E., Jiskoot, W. et al. Impact-Insertion Applicator Improves Reliability of Skin Penetration by Solid Microneedle Arrays. AAPS J 16, 681–684 (2014). https://doi.org/10.1208/s12248-014-9606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9606-7

KEY WORDS

Navigation