Skip to main content
Log in

Nanoemulsion Components Screening and Selection: a Technical Note

  • Brief/Technical Note
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S. Shafiq, S. Faiyaz, T. Sushma, F.J. Ahmad, R.K. Khar, and M. Ali. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 66:227–243 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. Z. Mei, H. Chen, T. Weng, and Y. Yang. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 56:189–196 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. A. Pineyro-Lopez, E. Pineyro-Garza, O. Torres-Alanis, R. Reyes-Araiza, M. Gomez-Silva, N. Waksman, M.E. Salazar-Leal, and R. Lujan-Rangel. Evaluation of the bioequivalence of single 100-mg doses of two oral formulations of cyclosporin a microemulsion: A randomized, open-label, two-period crossover study in healthy adult male mexican volunteers. Clin Therapeutics. 29:2049–2054 (2007).

    Article  CAS  Google Scholar 

  4. P.K. Ghosh, R.J. Majithiya, M.L. Umrethia and R.S.R. Murthy. Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability. AAPS PharmSciTech. 2006; 7: Article 77.

  5. H.Y. Karasulu, B. Karabulut, E. Goker, T. Guneri, and F. Gabor. Controlled release of methotrexate from w/o microemulsion and its in vitro antitumor activity. Drug Deliv. 14:225–33 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. K.W. Ambade, S.L. Jadhav, M.N. Gambhire, S.D. Kurmi, V.J. Kadam, and K.R. Jadhav. Formulation and evaluation of flurbiprofen microemulsion. Curr Drug Deliv. 5:32–41 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. J.S. Yuan, M. Ansari, M. Samaan, and E.J. Acosta. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm. 349:130–143 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. F. Shakeel, S. Baboota, A. Ahuja, J. Ali, M. Aqil, and S. Shafiq. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 8:E104 (2007).

    Article  PubMed  Google Scholar 

  9. S.L. Fialho, and A. da Silva-Cunha. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Expt Opthal. 32:626–632 (2004).

    Article  Google Scholar 

  10. F-F. Lv, N. Li, L-Q. Zheng, and S-H. Tung. Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. Eur J Pharm Biopharm. 62:288–294 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. M.L. Sommerville, J.B. Cain, C.S. Johnson Jr., and A.J. Hickey. Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm Dev Technol. 5:219–230 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. I.L. Lianly, I. Nandi, and K.H. Kim. Development of an ethyl laurate based microemulsion for rapid onset of intranasal delivery of diazepam. Int J Pharm. 237:77–85 (2002).

    Article  Google Scholar 

  13. T.K. Vyas, A.K. Babbar, R.K. Sharma, S. Singh, and A. Misra. Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting. J Pharm Sci. 95:570–580 (2005).

    Article  Google Scholar 

  14. D’Cruz, S.H. Yiv, and F.M. Uckun. GM-144, a novel lipophilic vaginal contraceptive gel-microemulsion. AAPS Pharm. Sci. Tech. 2:E5 (2001).

    CAS  Google Scholar 

  15. O.J. D’Cruz, and F.M. Uckun. Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception. 64:113–123 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. X. Zhao, D. Chen, P. Gao, P. Ding, and K. Li. Synthesis of Ibuprofen eugenol ester and its microemulsion formulation for parenteral delivery. Chem. Pharm. Bull. 53:1246–1250 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. M. Jumma, and B.W. Muller. The effect of oil components and homogenization conditions on the physicochemical properties and stability of parenteral fat emulsions. Int J Pharm. 163:81–89 (1998).

    Article  Google Scholar 

  18. C. von Corswant, P. Thoren, and S. Engstrom. Triglyceride based microemulsion for intravenous administration of sparingly soluble substances. J Pharm Sci. 87:200–208 (1998).

    Article  Google Scholar 

  19. H. Chen, X. Chang, T. Weng, X. Zhao, Z. Gao, Y. Yang, H. Xu, and X. Yang. A study of microemulsion systems for transdermal delivery of triptolide. J Control Rel. 98:427–436 (2004).

    Article  CAS  Google Scholar 

  20. D. Attwood. Microemulsions. In J. Kreuer (ed.), Colloidal Drug Delivery Systems, Marcel Dekker, New York, 1994, pp. 31–71.

    Google Scholar 

  21. A. Azeem, Z. Iqbal, F.J. Ahmad, R.K. Khar, and S. Talegaonkar. Development and validation of a stability indicating method for determination of ropinirole in the bulk drug and in pharmaceutical dosage forms. Acta Chromatographica. 20:95–107 (2008).

    Article  Google Scholar 

  22. M.J. Lawrence, and G.D. Rees. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 45:89–121 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. A.S. Narang, D. Delmarre, and D. Gao. Stable drug encapsulation in micelles and microemulsions. Int J Pharm. 345:9–25 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. P.P. Constantinides. Lipid microemulsions for improving drug dissolution and oral absorption and biopharmaceutical aspects. Pharm Res. 12:1561–1572 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. A. Karim, R. Gokhale, M. Cole, J. Sherman, P. Yeramian, M. Bryant, and H. Franke. HIV protease inhibitor SC-52151: a novel method of optimizing bioavailability profile via a microemulsion drug delivery system. Pharm Res. 11:S368 (1994).

    Google Scholar 

  26. K. Kawakami, T. Yoshikawa, Y. Moroto, E. Kanaoka, K. Takahashi, Y. Nishihara, and K. Masuda. Microemulsion formulation for enhanced absorption of poorly soluble drugs. II. In vivo study. J Control Rel. 81:75–82 (2002).

    Article  CAS  Google Scholar 

  27. T.R. Kommuru, B. Gurley, M.A. Khan, and I.K. Reddy. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 212:233–246 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. M. Kreilgaard, E.J. Pedersen, and J.W. Jaroszewski. NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Rel. 69:421–433 (2000).

    Article  CAS  Google Scholar 

  29. S. Tenjarla. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 16:461–521 (1999).

    PubMed  CAS  Google Scholar 

  30. D.Q.M. Craig, S.A. Barker, D. Banning, and S.W. Booth. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 114:103–110 (1995).

    Article  CAS  Google Scholar 

  31. S. Ajith, and A.K. Rakshit. Studies of mixed surfactant microemulsion systems: Brij 35 and Tween 20 and sodium dodecyl sulfate. J. Phys. Chem. 99:14778–14783 (1995).

    Article  CAS  Google Scholar 

  32. M. Kreilgaard, E.J. Pedersen, and J.W. Jaroszewski. NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Rel. 69:421–433 (2000).

    Article  CAS  Google Scholar 

  33. L. Hua, P. Weisan, L. Jiayu, and Z. Ying. Preparation, evaluation and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm. 30:657–666 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. C. Malcolmson, C. Satra, S. Kantaria, A. Sidhu, and M.J. Lawrence. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci. 87:109–116 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Yuan, S-M. Li, F-K. Mo, and D-F. Zhong. Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm. 321:117–123 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. D. Attwood, C. Mallon, G. Ktistis, and C.J. Taylor. A study on factors influencing the droplet size in nonionic oil-in-water microemulsions. Int J Pharm. 88:417–422 (1992).

    Article  CAS  Google Scholar 

  37. G. Ktistis. A viscosity study on oil-in-water microemulsions. Int J Pharm. 61:213–218 (1990).

    Article  CAS  Google Scholar 

  38. D. Attwood, and G. Ktistis. A light scattering study on oil-in-water microemulsions. Int. J. Pharm. 52:165–171 (1989).

    Article  CAS  Google Scholar 

  39. Y-S. Rhee, J-G. Choi, E-S. Park, and S-C. Chi. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 228:161–170 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. K. Shinoda, and B. Lindman. Organized surfactant systems: microemulsions. Langmuir. 3:167–180 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission, Govt. of India, for funding the project work. Adnan Azeem thanks the Colocon Asia Pvt. for providing gift samples of surfactants and oils (Gattefosse, France), Nikko Chemicals (Tokyo, Japan) for Sefsol-218, and USV (Mumbai, India) for the gift sample of ropinirole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Azeem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azeem, A., Rizwan, M., Ahmad, F.J. et al. Nanoemulsion Components Screening and Selection: a Technical Note. AAPS PharmSciTech 10, 69–76 (2009). https://doi.org/10.1208/s12249-008-9178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9178-x

Key words

Navigation