Skip to main content

Advertisement

Log in

Preparation and Evaluation of Miconazole Nitrate-Loaded Solid Lipid Nanoparticles for Topical Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to prepare miconazole nitrate (MN) loaded solid lipid nanoparticles (MN-SLN) effective for topical delivery of miconazole nitrate. Compritol 888 ATO as lipid, propylene glycol (PG) to increase drug solubility in lipid, tween 80, and glyceryl monostearate were used as the surfactants to stabilize SLN dispersion in the SLN preparation using hot homogenization method. SLN dispersions exhibited average size between 244 and 766 nm. All the dispersions had high entrapment efficiency ranging from 80% to 100%. The MN-SLN dispersion which showed good stability for a period of 1 month was selected. This MN-SLN was characterized for particle size, entrapment efficiency, and X-ray diffraction. The penetration of miconazole nitrate from the gel formulated using selected MN-SLN dispersion as into cadaver skins was evaluated ex-vivo using franz diffusion cell. The results of differential scanning calorimetry (DSC) showed that MN was dispersed in SLN in an amorphous state. The MN-SLN formulations could significantly increase the accumulative uptake of MN in skin over the marketed gel and showed a significantly enhanced skin targeting effect. These results indicate that the studied MN-SLN formulation with skin targeting may be a promising carrier for topical delivery of miconazole nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. H. Müller, K. Mäder, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery—review of the state of the art. Eur. J. Pharm. Biopharm. 50:161–177 (2000).

    Article  PubMed  Google Scholar 

  2. A. Sylvia, R. H. Müller, and S. A. Wissing. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254:65–68 (2003).

    Article  CAS  Google Scholar 

  3. V. Jenning, A. Gysler, M. Schäfer-Korting, and S. H. Gohla. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49:211–218 (2003).

    Article  Google Scholar 

  4. S. A. Wissing, and R. H. Müller. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. Eur. J. Pharm. Biopharm. 56:67–72 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. A. ZurMühlen, C. Schwarz, and W. Mehnert. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur. J. Pharm. Biopharm. 45:149–155 (1998).

    Article  Google Scholar 

  6. S. Utreja, and N. K. Jain. Solid lipid nanoparticles. In N. K. Jain (ed.), Advances in Controlled and Novel Drug Delivery, CBS, New Delhi, 2001, pp. 408–425.

    Google Scholar 

  7. C. S. Maia, W. Mehnert, and M. Schäfer-Korting. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm. 196:165–167 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. R. Sivaramakrishnan, C. Nakamura, W. Mehnert, H. C. Korting, K. D. Kramer, and M. Schäfer-Korting. Glucocorticoid entrapment into lipid carriers—characterization by parelectic spectroscopy and influence on dermal uptake. J. Control. Release. 97:493–502 (2004).

    PubMed  CAS  Google Scholar 

  9. S. P. Vyas, and R. K. Kharss. Nanoparticles. In S. P. Vyas, and R. K. Khar (eds.), Targeted and Controlled Drug Delivery—Novel Carrier Systems, CBS, New Delhi, 2002, pp. 331–338.

    Google Scholar 

  10. R. H. Muller, M. Radtke, and S. A. Wissing. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:S131–S155 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. C. Song, and S. Liu. A new healthy sunscreen system for human: solid lipid nanoparticles as carrier for 3, 4, 5-trimethoxybenzoylchitin and the improvement by adding vitamin E. Int. J. Biol. Macromol. 36:116–119 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. E. B. Souto, S. A. Wissing, C. M. Barbosa, and R. H. Müller. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278:71–77 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. H. B. Chen, X. L. Chang, X. L. Yang, D. R. Du, W. Liu, Y. J. Yang, and H. B. Xu. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release. 110:296–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. V. Venkateswarlu, and K. Manjunath. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release. 95:627–638 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. R. H. Müller, W. Mehnert, J. S. Lucks, C. Schwarz, A. Zur Mühlen, H. Weyhers, C. Freitas, and D. Rühl. Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41:62–69 (1995).

    Google Scholar 

  16. A. Z. Mahmoudabadi, and D. B. Drucker. Effect of amphotericin B, nystatin and miconazole on the polar lipids of Candida albicans and Candida dubliniensis. Indian J. Pharmacol. 38:423–426 (2006).

    Article  Google Scholar 

  17. B. Patel, H. Shah. Antifungal gel formulations, US patent 5002938. (1991).

  18. P. V. Pople, and K. K. Singh. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 7(4):article 91 (2006).

    Article  Google Scholar 

  19. L. Harivardhan Reddy, and R. S. R. Murthy. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech. 6(2):E158–E166 (2005).

    Article  PubMed  Google Scholar 

  20. O. Glatter, and K. Gruber. Indirect transformation in reciprocal space: desmearing of small-angle scattering data from partially ordered systems. J. Appl. Cryst. 26:512–518 (1993).

    Article  CAS  Google Scholar 

  21. A. Martin. Rheology. In A. E. Martin (ed.), Physical Pharmacy, Fourth edn., Lea and Febiger, Philadelphia, 1993, pp. 453–476.

    Google Scholar 

  22. R. Barreiro-Iglesias, C. Alvarez-Lorenzo, and A. Concheiro. Poly(acrylic acid) microgels (carbopol®934)/surfactant interactions in aqueous media Part I: nonionic surfactants. Int. J. Pharm. 258:165–177 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Y. L. Yeow, D. Chandra, A. A. Sardjono, H. Wijaya, Y.-K. Leong, and A. Khan. A general method for obtaining shear stress and normal stress functions from parallel disk rheometry data. Rheol. Acta. 44:270–277 (2005).

    Article  CAS  Google Scholar 

  24. S. Tamburic, and D. Q. M. Craig. Rheological evaluation of polyacrylic acid hydrogels. Pharm. Sci. 1:107–109 (1995).

    CAS  Google Scholar 

  25. M. J. C. Fresno, A. D. Ramirez, and M. M. Jimenez. Systematic study of the flow behaviour and mechanical properties of Carbopol (R) Ultrez (TM) 10 hydroalcoholic gels. Eur. J. Pharm. Biopharm. 54:329–335 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. J. S. Chu, D. M. Yu, G. L. Amidon, N. D. Weiner, and A. H. Goldber. Viscoelastic properties of polyacrylic acid gels in mixed solvents. Pharm. Res. 9:1659–1663 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. B. W. Barry, and M. C. Meyer. The rheological properties of carbopol gels. I. Continuous shear and creep properties of carbopol gels. Int. J. Pharm. 2:1–25 (1979).

    Article  CAS  Google Scholar 

  28. B. W. Barry, and M.C. Meyer. The rheological properties of carbopol gels. II. Oscillatory properties of carbopol gels. Int. J. Pharm. 2:27–40 (1979).

    Article  CAS  Google Scholar 

  29. A. Lippacher, R. H. Muller, and K. Mader. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int. J. Pharm. 214:9–12 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Harish Rao of Serum India Ltd. for his kind help with ultracentrifugation. We are also thankful to Gattefosse, France, for kindly supplying the lipids used in this study and Rajadilip Gupta of Glenmark Laboratories for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangesh R. Bhalekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalekar, M.R., Pokharkar, V., Madgulkar, A. et al. Preparation and Evaluation of Miconazole Nitrate-Loaded Solid Lipid Nanoparticles for Topical Delivery. AAPS PharmSciTech 10, 289–296 (2009). https://doi.org/10.1208/s12249-009-9199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9199-0

Key words

Navigation