Skip to main content
Log in

Soluplus-Solubilized Citrated Camptothecin—A Potential Drug Delivery Strategy in Colon Cancer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Camptothecin (CPT), a potent antitumor drug, exhibits poor aqueous solubility and rapid conversion from the pharmacologically active lactone form to inactive carboxylate form at physiological pH. Solid dispersion of CPT in Soluplus®, an amphiphilic polymeric solubilizer, was prepared to increase the aqueous solubility of CPT and the resultant solid dispersion along with citric acid was formulated as hard gelatin capsules that were subsequently coated with Eudragit S100 polymer for colonic delivery. FTIR spectrum of the solid dispersion confirmed the presence of CPT. PXRD and DSC revealed the semicrystalline nature of solid dispersion. The solubility of the drug was found to increase ~40 times in the presence of Soluplus and ~75 times in solid dispersion. The capsules showed no drug release in 0.01 N HCl but released 86.4% drug in lactone form in phosphate buffer (pH 7.4) and the result appears to be due to citric acid-induced lowering of pH of buffer from 7.4 to 6.0. Thus the presence of citric acid in the formulation led to stabilization of the drug in its pharmacologically active lactone form. Cytotoxicity studies conducted with the formulation of solid dispersion with citric acid, utilizing cell cytotoxicity test (MTT test) on Caco-2 cells, confirmed cytotoxic nature of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Giovannucci E. Modifiable risk factors for colon cancer. Gastroenterol Clin North Am. 2002;31:925–43.

    Article  PubMed  Google Scholar 

  2. Kinzler KW, Vogelstein B. Colorectal tumors. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill; 2002. p. 583–612.

    Google Scholar 

  3. Compton C, Hawk ET, Grochow L, Lee F, Ritter M, Niederhuber JE. Colon cancer. In: Abeloff MD, Armitage J, Niederhuber JE, Kastan MB, McKenna GW, editors. Abeloff's Clinical Oncology. Philadelphia: Churchill Livingstone; 2008. p. 1477–534.

    Chapter  Google Scholar 

  4. Libutti SK, Saltz LB, Tepper JE. Colon cancer. In: DeVita Jr VT, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman and Rosenberg's Cancer Principles and Practice of Oncology. Vol.1. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 1232–84.

    Google Scholar 

  5. Moertel CG. Chemotherapy for colorectal cancer. N Eng J Med. 1994;330:1136–42.

    Article  CAS  Google Scholar 

  6. DiPiro JT. Pharmacotherapy (a pathophysiologic approach). 7th ed. New York: McGraw-Hill Medical; 2008.

    Google Scholar 

  7. Wall ME, Wani MC, Cook CE, Palmer KH, Mc Phail AT, Sim GA. Plant antitumor agents: I. Isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc. 1966;88:3888–90.

    Article  CAS  Google Scholar 

  8. Camptothecin. In: Wikipedia; the free encyclopedia. Accessed 25 June 2010

  9. Wang JC. DNA topoisomerases. Ann Rev Biochem. 1985;54:665–97.

    Article  PubMed  CAS  Google Scholar 

  10. Chen AY, Liu LF. DNA topoisomerases, essential enzymes and lethal targets. Ann Rev Pharmacol Toxicol. 1994;94:194–218.

    Google Scholar 

  11. Scott DO, Bindra DS, Stella VJ. Plasma pharmacokinetics of the lactone and carboxylate forms of 20(S)-camptothecin in anesthetized rats. Pharm Res. 1993;10:1451–7.

    Article  PubMed  CAS  Google Scholar 

  12. Chourpa I, Millot JM, Stockalingum GD, Riou JF, Manfait M. Kinetics of lactone hydrolysis in antitumor drugs of camptothecin series as studied by fluorescence spectroscopy. Biochem Biophys Acta. 1998;1379:353–66.

    Article  PubMed  CAS  Google Scholar 

  13. Burke TG, Mi Z. Preferential binding of the carboxylate form of camptothecin by human serum albumin. Anal Biochem. 1993;212:285–7.

    Article  PubMed  CAS  Google Scholar 

  14. Moertel CG, Schutt AJ, Reitemeier RJ, Hahn R. Phase II study of camptothecin (NSC 100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep. 1972;56:95–9.

    PubMed  CAS  Google Scholar 

  15. Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Sealwry OS. Phase 1 clinical trials of weekly and daily treatment with camptothecin (NSC 100880). Cancer Chemother Rep. 1972;56:515–21.

    PubMed  CAS  Google Scholar 

  16. Hertzberg RP, Caranfa MJ, Holden KG, Jakas DJ, Liu LF. DNA topoisomer, topoisomerase-targeting drugs. New York: Academy Press; 1994.

    Google Scholar 

  17. Daoud SS, Fetouh MI, Giovanella BC. Antitumor effect of liposomes-incorporated camptothecin in human malignant xenografts. Anti-cancer Drugs. 1995;6:83–93.

    Article  PubMed  CAS  Google Scholar 

  18. Ertl B, Platzer P, Wirth M, Gabor F. Poly(D, L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin. J Controlled Rel. 1999;61:305–17.

    Article  CAS  Google Scholar 

  19. Greenwald RB, Pendri A, Conover C, Gilbert C. Drug delivery systems. 2. Camptothecin 20–O–poly(ethylene glycol) ester transport forms. J Med Chem. 1996;39:1938–40.

    Article  PubMed  CAS  Google Scholar 

  20. Kang J, Kumat V, Yang D, Chowdhury PR, Hohl RJ. Cyclodextrin complexation, influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur J Pharm Sci. 2002;15:163–70.

    Article  PubMed  CAS  Google Scholar 

  21. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical application of hot melt extrusion, part 1. Drug Dev Ind Pharm. 2007;33:909–26.

    Article  PubMed  CAS  Google Scholar 

  22. Thakral NK, Ray AR, Majumdar DK. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci Mater Med. 2010;21(9):2691–9.

    Article  PubMed  CAS  Google Scholar 

  23. Li SP, Feld KM, Kowarski CR. Preparation and evaluation of Eudragit acrylic resin from controlled drug release of pseudoephedrine hydrochloride. Drug Dev Ind Pharm. 1991;17:1655–83.

    Article  CAS  Google Scholar 

  24. Thakral NK, Ray AR, Bar-Shalom D, Eriksson AH, Majumdar DK. The quest for targeted delivery in colon cancer: mucoadhesive valdecoxib microspheres. Int J Nanomedicine. 2011;6:1057–68.

    Article  PubMed  CAS  Google Scholar 

  25. Warner DL, Burke TG. Simple and versatile high-performance liquid chromatographic method for the simultaneous quantitation of the lactone and carboxylate forms of camptothecin anticancer drugs. J Chromatogr. 1997;691:161–71.

    Article  CAS  Google Scholar 

  26. Slade L, Levine H. A food polymer science approach to structure–property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water system. In: Slade L, Levine H, editors. Water relationships in food. New York: Plenum Press; 1991. p. 29–101.

    Google Scholar 

  27. Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Mönnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9.

    Article  PubMed  CAS  Google Scholar 

  28. Indian Pharmacopoeia. The Indian Pharmacopoeia Commission, Ghaziabad, Ministry of Health & Family Welfare. Government India. 2010;1:559–60.

    Google Scholar 

  29. Anderberg EK, Artursson P. Epithelial transport of drugs in cell culture: VIII. Effects of the pharmaceutical surfactant excipient sodium dodecyl sulfate on cell membrane and tight junctional permeability in human intestinal epithelial (Caco-2) cells. J Pharm Sci. 1993;82:392–8.

    Article  PubMed  CAS  Google Scholar 

  30. Larsen M, Larsen BB, Frolund B, Nielsen CU. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1, characterization of conditions for affinity and transport experiments in Caco-2 cells. Eur J Pharm Sci. 2008;35:86–95.

    Article  PubMed  CAS  Google Scholar 

  31. Wike-Hooley JL, van den Berg AP, van der Zee J, Reinhold HS. Human tumor pH and its variation. Eur J Cancer Clin Oncol. 1985;21:785–91.

    Article  PubMed  CAS  Google Scholar 

  32. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1993;71:543–6.

    Article  Google Scholar 

  33. Nelson WG, Kastan MB. DNA strand break, the DNA template alterations that trigger p53-dependant DNA damage response pathways. Mol Cell Biol. 1994;14:1815–23.

    PubMed  CAS  Google Scholar 

  34. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. Loss of a p53-associated G1 checkpoint does not increase cell survival following DNA damage. Cancer Res. 1993;53:4164–8.

    PubMed  CAS  Google Scholar 

  35. Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, et al. p53 mutation in colorectal cancer. Proc Natl Acad Sci USA. 1990;87:7555–9.

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Bodmar WF. Analysis of p53 mutations and their expression in 56 colorectal cell lines. Proc Natl Acad Sci USA. 2006;103:976–81.

    Article  PubMed  CAS  Google Scholar 

  37. Konopa J. G2 block induced by DNA crosslinking agents and its possible consequences. Biochem Pharmacol. 1988;37:2303–9.

    Article  PubMed  CAS  Google Scholar 

  38. Han Z, Chatterjee D, Ming He D, Early J, Pantazis P, Wyche JH, et al. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol Cell Bio. 1995;15:5849–57.

    CAS  Google Scholar 

  39. Goldwasser F, Shimizu T, Jackman J, Hoki Y, O'Connor PM, Kohn KW, et al. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res. 1996;56:4430–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakral, N.K., Ray, A.R., Bar-Shalom, D. et al. Soluplus-Solubilized Citrated Camptothecin—A Potential Drug Delivery Strategy in Colon Cancer. AAPS PharmSciTech 13, 59–66 (2012). https://doi.org/10.1208/s12249-011-9720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9720-0

KEY WORDS

Navigation