Skip to main content
Log in

Influence of Formulation Factors on the Preparation of Zein Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main objective of the present study was to investigate the influence of various formulation parameters on the preparation of zein nanoparticles. 6,7-dihydroxycoumarin (DHC) was used as a model hydrophobic compound. The influence of pH of the aqueous phase, buffer type, ionic strength, surfactant, and zein concentration on particle size, polydispersity index, and zeta potential of DHC-loaded zein nanoparticles were studied. Smaller nanoparticles were formed when the pH was close to the isoelectric point of zein. DHC-loaded zein nanoparticles prepared using citrate buffer (pH 7.4) was better than phosphate buffer in preventing particle aggregation during lyophilization. The ionic strength did not have a significant influence on the particle size of DHC-loaded zein nanoparticles. A combination of Pluronic F68 and lecithin in 2:1 ratio stabilized the zein nanoparticles. An increase in zein concentration led to increase in particle size of DHC-loaded zein nanoparticles. The use of optimal conditions produced DHC-loaded nanoparticles of 256 ± 30 nm and an encapsulation efficiency of 78 ± 7%. Overall, the study demonstrated the optimal conditions to prepare zein nanoparticles for drug encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41:2545–61.

    Article  PubMed  CAS  Google Scholar 

  2. Wang G, Uldag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Exp Opin Drug Deliv. 2008;5:499–515.

    Article  CAS  Google Scholar 

  3. Langer K, Balthasar S, Vogel V, Dinauer N, Briesen HV, Shubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–80.

    Article  PubMed  CAS  Google Scholar 

  4. Kaul G, Amiji M. Tumor-targeted gene delivery using poly (ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res. 2005;22:951–61.

    Article  PubMed  CAS  Google Scholar 

  5. Reddy N, Yang Y. Potential of plant proteins for medical applications. Trend Biotechnol. 2011;29:490–8.

    Article  CAS  Google Scholar 

  6. Satheesh P, Radhey K, Omathanu P. Protein based nanoparticulate drug delivery systems. In: Yashwant P, Deepak T, editors. Nanoparticulate drug delivery systems. II. Formulation and characterization. New York: Informa Healthcare; 2009. p. 69–91.

    Google Scholar 

  7. Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil (125)I sodium alginate bovine serum albumin nanoparticles. World J Gastrol. 1999;5:57–60.

    Google Scholar 

  8. Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple emulsion as delivery system for methotrexate. J Mater Sci Mater Med. 2002;13:523–6.

    Article  PubMed  CAS  Google Scholar 

  9. Wang SZ, Esen A. Primary structure of a proline rich zein and its cDNA. Plant Physiol. 1986;81:70–4.

    Article  PubMed  CAS  Google Scholar 

  10. Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crops Prod. 2001;13:171–92.

    Article  CAS  Google Scholar 

  11. Moros EE, Darnoko D, Cheryan M, Perkins EG, Jerrell J. Analysis of xanthophylls in corn by HPLC. J Agric Food Chem. 2002;50:5787–90.

    Article  PubMed  CAS  Google Scholar 

  12. Kale A, Zhu F, Cheryan M. Separation of high-value products from ethanol extracts of corn by chromatography. Ind Crop Prod. 2007;26:44–53.

    Article  CAS  Google Scholar 

  13. Anonymous. Wheat gluten, corn gluten and zein film: affirmation of GRAS status. Fed Regist. 1985;50:8997–8999.

  14. Gong SJ, Sun SX, Sun QS, Wang JY, Liu XM, Liu GY. Tablets based on compressed zein microspheres for sustained oral administration: design, pharmacokinetics and clinical study. J Biomater Appl. 2011;26:195–208.

    Article  PubMed  CAS  Google Scholar 

  15. Wang HJ, Lin ZX, Liu XM, Sheng SY, Wang JY. Heparin-loaded zein microsphere film and hemocompatibility. J Control Release. 2005;105:120–31.

    Article  PubMed  CAS  Google Scholar 

  16. Lai LF, Guo HX. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011;404:317–23.

    Article  PubMed  CAS  Google Scholar 

  17. Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem. 2012;60:836–43.

    Article  PubMed  CAS  Google Scholar 

  18. Patel A, Hu Y, Tiwari JK, Velikov KP. Synthesis and characterization of zein-curcumin colloidal particles. Soft Matter. 2010;6:6192–9.

    Article  CAS  Google Scholar 

  19. Hurtando-Lopez P, Murdan S. Formulation and characterization of zein microspheres as drug delivery vehicles. J Drug Deliv Sci Tech. 2005;15:267–72.

    Google Scholar 

  20. Zhong Q, Jin M. Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocolloid. 2009;23:2380–7.

    Article  CAS  Google Scholar 

  21. Zhong Q, Jin M, Xiao D, Tian H, Zhang W. Application of supercritical anti-solvent technologies for the synthesis of delivery systems of bioactive components. Food Biophys. 2008;3:186–90.

    Article  Google Scholar 

  22. Satheesh P, Perumal O. Preparation of zein nanoparticles by pH controlled nanoprecipitation method. J Biomed Nanotechnol. 2010;6:312–7.

    Article  Google Scholar 

  23. Guo Y, Liu Z, An H, Li M, Hu J. Nanostructure and properties of maize zein studied by atomic force microscopy. J Cereal Sci. 2005;41:277–81.

    Article  CAS  Google Scholar 

  24. Demchak RJ, Dybas RA. Photostability of abamectin/zein microspheres. J Agric Food Chem. 1997;45:260–2.

    Article  CAS  Google Scholar 

  25. Patel AR, Elisabeth CM, Bouwens M, Velikov KP. Sodium caseinate stabilized zein colloidal particles. J Agric Food Chem. 2010;58:12497–503.

    Article  CAS  Google Scholar 

  26. Anhorn MG, Mahler HC, Langer K. Freeze drying of human serum albumin (HAS) nanoparticles with different excipients. Int J Pharm. 2008;363:162–9.

    Article  PubMed  CAS  Google Scholar 

  27. Magoshi J, Nakamura S, Murakami K. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J Appl Polym Sci. 1992;45:2043–8.

    Article  CAS  Google Scholar 

  28. Langer K, Anhorn MG, Steinhauser I, Dreis S, Celebi D, Schrickel N, et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm. 2008;347:109–17.

    Article  PubMed  CAS  Google Scholar 

  29. Esen A. Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol. 1986;80:623–7.

    Article  PubMed  CAS  Google Scholar 

  30. Irache JM, Bergougnoux L, Ezpeleta I, Gueguen J, Orecchioni AM. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int J Pharm. 1995;126:103–9.

    Article  CAS  Google Scholar 

  31. Cabra V, Arreguin R, Vazquez-Duhalt R, Farres A. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochim Biophys Acta. 2006;1764:1110–8.

    Article  PubMed  CAS  Google Scholar 

  32. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

    Article  PubMed  CAS  Google Scholar 

  33. Shalaev EY, Johnson-Elton TD, Chang L, Pikal MJ. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm Res. 2002;19:195–201.

    Article  PubMed  CAS  Google Scholar 

  34. Reddy N, Li Y, Yang Y. Alkali-catalyzed low temperatures wet cross linking of plant proteins using carboxylic acids. Biotechnol Prog. 2009;25:139–46.

    Article  PubMed  CAS  Google Scholar 

  35. Duclairoir C, Nakache E, Marchais H, Orecchioni AM. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym Sci. 1998;276:321–7.

    Article  CAS  Google Scholar 

  36. Fairhurst D, Lee RW. The zeta potential and its use in pharmaceutical applications—part 1: charged interfaces in polar and non-polar media and the concept of zeta potential. Drug Dev Deliv. 2011;11:60–4.

    CAS  Google Scholar 

  37. Schubert MA, Muller-Goymann CC. Characterization of surface modified solid lipid nanoparticles (SLN): influence of lecithin and non-ionic emulsifier. Eur J Pharm Biopharm. 2000;61:77–86.

    Article  Google Scholar 

  38. Vanessa CFM, Philippe L, Huguette PA, Francis P, Gillian B. Poly(d,l-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties. J Pharm Sci. 2000;89:614–26.

    Article  Google Scholar 

  39. Dulieu C, Bazile D. Influence of lipid nanocapsules composition on their aptness to freeze-drying. Pharm Res. 2005;22:285–92.

    Article  PubMed  CAS  Google Scholar 

  40. Hong YZ, Xing T, Hong YL, Xiao LL. A lipid microsphere vehicle for vinorelbine: stability, and safety and pharmacokinetics. Int J Pharm. 2008;348:70–9.

    Article  Google Scholar 

  41. Dulclairoir C, Nakache E. Polymer nanoparticle characterization in aqueous suspensions. Int J Polym Anal Charac. 2002;7:284–313.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the South Dakota State Corn Utilization Council, Governor’s 2010 competitive research seed grant, and Department of Pharmaceutical Sciences, South Dakota State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omathanu Perumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podaralla, S., Perumal, O. Influence of Formulation Factors on the Preparation of Zein Nanoparticles. AAPS PharmSciTech 13, 919–927 (2012). https://doi.org/10.1208/s12249-012-9816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9816-1

KEY WORDS

Navigation