Skip to main content

Advertisement

Log in

Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics

  • Review Article
  • Theme: Formulation and Delivery of Macromolecules
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castán H, Ruiz MA, Clares B, Morales ME. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv. 2015;22(6):869–76. doi:10.3109/10717544.2014.896958

  2. Costa IDM, Abranches RP, Garcia MTJ, Pierre MBR. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J Photochem Photobiol B. 2014;140:266–75.

    Article  CAS  Google Scholar 

  3. Morales JO, McConville JT. Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm. 2014;40:579–90.

    Article  CAS  PubMed  Google Scholar 

  4. Castro PM, Fonte P, Sousa F, Madureira AR, Sarmento B, Pintado ME. Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release. 2015;211:63–73.

    Article  CAS  PubMed  Google Scholar 

  5. Chhina M. Overview of biological products. Center for Drug Evaluation and Research U.S. Food and Drug Administration FDA Webinar; 2013.

  6. Zhao L, Ren T, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012;33:1339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym. 2012;87:581–8.

    Article  CAS  Google Scholar 

  8. Senel S, Kremer M, Nagy K, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol. 2001;2:175–86.

    Article  CAS  PubMed  Google Scholar 

  9. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77:187–99.

    Article  CAS  PubMed  Google Scholar 

  10. MonoSol Rx. MonoSol Rx and the PharmFilm pipeline. 2015. http://www.monosolrx.com/content/pipeline/overview.htm. Accessed 16 Nov 2015.

  11. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2014. doi:10.1016/j.jsps.2014.06.004.

    PubMed  PubMed Central  Google Scholar 

  12. Klein P, Kanehisa M, DeLisi C. Prediction of protein function from sequence properties. Discriminant analysis of a data base. Biochim Biophys Acta. 1984;787:221–6.

    Article  CAS  PubMed  Google Scholar 

  13. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  14. Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. React Funct Polym. 2011;71:280–7.

    Article  CAS  Google Scholar 

  15. Genetic Engineering & Biotechnology News The Top 25 Best-Selling Drugs of 2014 | Insight & Intelligence™ In: G. E. N. http://www.genengnews.com/insight-and-intelligence/the-top-25-best-selling-drugs-of-2014/77900383/?kwrd=top%20selling%20drugs&page=2. Accessed 24 Nov 2015.

  16. Voet D. Biochemistry. J. Wiley & Sons: New York; 1995.

  17. Nehete JY, Bhambar RS, Narkhede MR, Gawali SR. Natural proteins: sources, isolation, characterization and applications. Pharmacogn Rev. 2013;7:107–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pihlasalo S, Auranen L, Hänninen P, Härmä H. Method for estimation of protein isoelectric point. Anal Chem. 2012;84:8253–8.

    Article  CAS  PubMed  Google Scholar 

  19. Trevino SR, Scholtz JM, Pace CN. Measuring and increasing protein solubility. J Pharm Sci. 2008;97:4155–66.

    Article  CAS  PubMed  Google Scholar 

  20. Arakawa T, Timasheff SN. Theory of protein solubility. Methods Enzymol. 1985;114:49–77.

    Article  CAS  PubMed  Google Scholar 

  21. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11:3039–47.

    Article  CAS  PubMed  Google Scholar 

  23. Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther. 1989;3:605–13.

    Article  CAS  PubMed  Google Scholar 

  24. Bratten J, Jones MP. Prolonged recording of duodenal acid exposure in patients with functional dyspepsia and controls using a radiotelemetry pH monitoring system. J Clin Gastroenterol. 2009;43:527–33.

    Article  PubMed  Google Scholar 

  25. Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hwang SR, Byun Y. Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv. 2014;11:1955–67.

    Article  CAS  PubMed  Google Scholar 

  27. Artursson P, Ungell AL, Löfroth JE. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res. 1993;10:1123–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nanci A. Ten Cate’s oral histology: development, structure, and function. Elsevier: St. Louis; 2008

  29. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26.

    Article  CAS  PubMed  Google Scholar 

  30. Lee HJ. Protein drug oral delivery: the recent progress. Arch Pharm Res. 2002;25:572–84.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou XH. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J Control Release. 1994;29:239–52.

    Article  CAS  Google Scholar 

  32. Smart AL, Gaisford S, Basit AW. Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv. 2014;11:1323–35.

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia. 2005;48:405–11.

    Article  CAS  PubMed  Google Scholar 

  34. Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet. 1984;9:1–25.

    Article  CAS  PubMed  Google Scholar 

  35. Rowland M. Influence of route of administration on drug availability. J Pharm Sci. 1972;61:70–4.

    Article  CAS  PubMed  Google Scholar 

  36. Chap Z, Ishida T, Chou J, Hartley CJ, Entman ML, Brandenburg D, et al. First-pass hepatic extraction and metabolic effects of insulin and insulin analogues. Am J Phys Endocrinol Metab. 1987;252:E209–17.

    CAS  Google Scholar 

  37. Bae SK, Yang KH, Aryal DK, Kim YG, Lee MG. Pharmacokinetics of amitriptyline and one of its metabolites, nortriptyline, in rats: little contribution of considerable hepatic first-pass effect to low bioavailability of amitriptyline due to great intestinal first-pass effect. J Pharm Sci. 2009;98:1587–601.

    Article  CAS  PubMed  Google Scholar 

  38. Yanamandra S, Venkatesan N, Kadajji VG, Wang Z, Issar M, Betageri GV. Proliposomes as a drug delivery system to decrease the hepatic first-pass metabolism: case study using a model drug. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;64:26–36.

    CAS  Google Scholar 

  39. Squier CA, Cox P, Wertz PW. Lipid content and water permeability of skin and oral mucosa. J Invest Dermatol. 1991;96:123–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev. 2012;64:16–28.

    Article  CAS  PubMed  Google Scholar 

  41. Patil PC. Oral fast dissolving drug delivery system: a modern approach for patient compliance. Int J Drug Regul Aff. 2014;2(2):49–60.

  42. Emedicine.medscape.com. Mouth Anatomy: Overview, Gross Anatomy: Oral Vestibule, Gross Anatomy: Oral Cavity Proper. 2016. [online] Available at: http://emedicine.medscape.com/article/1899122-overview. Accessed 5 Feb 2016.

  43. Arya S, Rane P, Deshmukh A. Oral cavity squamous cell carcinoma: role of pretreatment imaging and its influence on management. Clin Radiol. 2014;69:916–30.

    Article  CAS  PubMed  Google Scholar 

  44. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    Article  CAS  PubMed  Google Scholar 

  45. Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev. 1994;13:43–74.

    Article  CAS  Google Scholar 

  46. Tayal S, Jain N. Buccal control drug delivery system: a review. Int J Pharm Sci Res. 2011;2:13.

    Google Scholar 

  47. Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res. 1973;43:160–77.

    Article  CAS  PubMed  Google Scholar 

  48. Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—how do they really work? J Control Release. 2005;105:1–15.

    Article  CAS  PubMed  Google Scholar 

  49. Bhati R, Nagrajan RK. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res. 2012;3:659–81.

    CAS  Google Scholar 

  50. Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: the potential for unmet needs. Int J Pharm. 2015;494:537–51.

    Article  CAS  PubMed  Google Scholar 

  51. Research C for DE and Data Standards Manual (monographs) - Dosage Form. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/DataStandardsManualmonographs/ucm071666.htm. Accessed 14 Mar 2015.

  52. Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461:22–9.

    Article  CAS  PubMed  Google Scholar 

  53. Europe C of, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & Healthcare (2014) European Pharmacopoeia, 8th edition. Council Of Europe : European Directorate for the Quality of Medicines and Healthcare, Strasbourg.

  54. Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev Ind Pharm. 2014;40:669–79.

    Article  CAS  PubMed  Google Scholar 

  55. Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494:611–8.

    Article  CAS  PubMed  Google Scholar 

  56. Jeong SH, Lee J, Woo JS. Fast disintegrating tablets. In: Wen H, Park K (eds) Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice. John Wiley & Sons, Inc.: Hoboken. 2010. doi:10.1002/9780470640487.ch10

  57. Saigal N, Baboota S, Ahuja A, Ali J. Fast-dissolving intra-oral drug delivery systems. Expert Opin Ther Pat. 2008;18:769–81.

    Article  CAS  Google Scholar 

  58. Udhan RR, Chavan V, Tribhuvan N. Mouth dissolving film and their patent: an overview. Int Reserach J Pharm. 2012;3(9):39–42.

  59. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8:299–316.

    Article  CAS  PubMed  Google Scholar 

  60. Dexter AF, Malcolm AS, Middelberg APJ. Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nat Mater. 2006;5:502–6.

    Article  CAS  PubMed  Google Scholar 

  61. de Barros JMS, Scherer T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. A laminated polymer film formulation for enteric delivery of live vaccine and probiotic bacteria. J Pharm Sci. 2014;103:2022–32.

    Article  PubMed  CAS  Google Scholar 

  62. Dawson PL, Hirt DE, Rieck JR, Acton JC, Sotthibandhu A. Nisin release from films is affected by both protein type and film-forming method. Food Res Int. 2003;36:959–68.

    Article  CAS  Google Scholar 

  63. Padgett T, Han IY, Dawson PL. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot. 1998;61:1330–5.

    Article  CAS  PubMed  Google Scholar 

  64. Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B: Biointerfaces. 2013;112:9–15.

    Article  CAS  PubMed  Google Scholar 

  65. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–51.

    Article  CAS  PubMed  Google Scholar 

  66. Morales JO, Huang S, Williams RO, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B: Biointerfaces. 2014;122:38–45.

    Article  CAS  PubMed  Google Scholar 

  67. Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-Methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7:E107–13.

    Article  PubMed Central  Google Scholar 

  68. Kundu J, Patra C, Kundu SC. Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosal delivery. Mater Sci Eng C. 2008;28:1376–80.

    Article  CAS  Google Scholar 

  69. Li C, Koch RL, Raul VA, Bhatt PP, Johnston TP. Absorption of thyrotropin-releasing hormone in rats using a mucoadhesive buccal patch. Drug Dev Ind Pharm. 1997;23:239–46.

    Article  CAS  Google Scholar 

  70. Sushma M, Raju YP, Sundaresan CR, Vandana KR, Kumar NV, Chowdary VH. Transmucosal delivery of metformin—a comprehensive study. Curr Drug Deliv. 2014;11:172–8.

    Article  CAS  PubMed  Google Scholar 

  71. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. Expert Opin Drug Deliv. 2016;13(4):493–506. doi:10.1517/17425247.2016.1118048

  72. Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate. J Pharm Sci. 2015;104:2142–52.

    Article  CAS  PubMed  Google Scholar 

  73. Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28:2386–92.

    Article  CAS  PubMed  Google Scholar 

  74. Londhe VY, Umalkar KB. Formulation development and evaluation of fast dissolving film of telmisartan. Indian J Pharm Sci. 2012;74:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lindén M. Hot-melt extrusion of modified release pellets-influence of the formulation and extrusion process on extended-and enteric release profile. 2012.

  76. Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70:61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park J-B, Prodduturi S, Morott J, Kulkarni VI, Jacob MR, Khan SI, et al. Development of an antifungal denture adhesive film for oral candidiasis utilizing hot melt extrusion technology. Expert Opin Drug Deliv. 2015;12:1–13.

    Article  CAS  PubMed  Google Scholar 

  78. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156:179–85.

    Article  CAS  PubMed  Google Scholar 

  79. Repka MA, Munjal M, ElSohly MA, Ross SA. Temperature stability and bioadhesive properties of δ9-tetrahydrocannabinol incorporated hydroxypropylcellulose polymer matrix systems. Drug Dev Ind Pharm. 2006;32:21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arrabito G, Pignataro B. Inkjet printing methodologies for drug screening. Anal Chem. 2010;82:3104–7.

    Article  CAS  PubMed  Google Scholar 

  81. Krampe R, Visser JC, Frijlink HW, Breitkreutz J, Woerdenbag HJ, Preis M. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes. Expert Opin Drug Deliv. 2015;1–14.

  82. Zhang Y, Cui L, Che X, Zhang H, Shi N, Li C, et al. Zein-based films and their usage for controlled delivery: origin, classes and current landscape. J Control Release. 2015;206:206–19.

    Article  CAS  PubMed  Google Scholar 

  83. Siemann U. Solvent cast technology—a versatile tool for thin film production. In: Scatt. Methods Prop. Polym. Mater. Springer; 2005. pp 1–14.

  84. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm. 2012.

  85. Repka MA, Gutta K, Prodduturi S, Munjal M, Stodghill SP. Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm. 2005;59:189–96.

    Article  CAS  PubMed  Google Scholar 

  86. Jedinger N, Schrank S, Fischer JM, Breinhälter K, Khinast J, Roblegg E. Development of an abuse- and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech. 2015. doi:10.1208/s12249-015-0373-2.

    PubMed  PubMed Central  Google Scholar 

  87. Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80:149–55.

    Article  CAS  PubMed  Google Scholar 

  88. Wijshoff H. Structure- and fluid-dynamics in piezo inkjet printheads. Enschede: University of Twente [Host]; 2008.

    Google Scholar 

  89. Daly R, Harrington TS, Martin GD, Hutchings IM Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm. doi: 10.1016/j.ijpharm.2015.03.017.

  90. Houlgrave S, LaPorte GM, Stephens JC, Wilson JL. The classification of inkjet inks using accutof™ dart™ (direct analysis in real time) mass spectrometry—a preliminary study. J Forensic Sci. 2013;58:813–21.

    Article  CAS  PubMed  Google Scholar 

  91. Essel JT, Ihnen AC, Carter JD. Production of naproxen nanoparticle colloidal suspensions for inkjet printing applications. Ind Eng Chem Res. 2014;53:2726–31.

    Article  CAS  Google Scholar 

  92. Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453:488–97.

    Article  CAS  PubMed  Google Scholar 

  93. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85:1075–83.

    Article  CAS  PubMed  Google Scholar 

  94. Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5:4866.

    Article  CAS  Google Scholar 

  95. Blum L, Coulet P. Biosensor principles and applications. Marcel Dekker Inc.: New York; 1991.

  96. Zheng Q, Lu J, Chen H, Huang L, Cai J, Xu Z. Application of inkjet printing technique for biological material delivery and antimicrobial assays. Anal Biochem. 2011;410:171–6.

  97. Montenegro-Nicolini M, Miranda V, Toro E, Morales JO. The use of inkjet printing for dosing biomacromolecular actives in drug delivery systems. Conference presentation at 42nd Annual Meeting & Exposition of the Controlled Release Society. Scotland: Edinburgh; 2015.

  98. Bozkir A. Investigation of the stability with bracketing design in tablet form. Pharm Anal Acta. 2011. doi:10.4172/2153-2435.S1-005.

    Google Scholar 

  99. Singh J, Unlu Z, Ranganathan R, Griffiths P. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J Phys Chem B. 2008;112:3997–4008.

    Article  CAS  PubMed  Google Scholar 

  100. Morales JO, Montenegro-Nicolini M, Campano-Hantscheruk F. Forma farmacéutica para administración bucal de dosis altamente controlada, liberación controlada y estable de biomacromolécula que comprende película polimérica como sustrato de impresión y una tinta de inyección impresa sobre dicha película polimérica que comprende nanoparticulas o suspensiones de nanopartículas con dicha biomacromolécula, y método de preparación.

  101. Şenel S, Hıncal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72:133–44.

    Article  PubMed  Google Scholar 

  102. Caon T, Jin L, Simões CMO, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res. 2014. doi:10.1007/s11095-014-1485-1.

    PubMed  Google Scholar 

  103. Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1988;244:23–7.

    CAS  PubMed  Google Scholar 

  104. Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29:703–8.

    Article  CAS  PubMed  Google Scholar 

  105. Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85:129–40.

    Article  CAS  Google Scholar 

  106. Gupta V, Hwang BH, Doshi N, Mitragotri S. A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release. 2013;172:541–9.

    Article  CAS  PubMed  Google Scholar 

  107. Hoogstraate AJ, Coos Verhoef J, Pijpers A, van Leengoed LA, Verheijden JH, Junginger HE, et al. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm Res. 1996;13:1233–7.

    Article  CAS  PubMed  Google Scholar 

  108. Golden GM, McKie JE, Potts RO. Role of stratum corneum lipid fluidity in transdermal drug flux. J Pharm Sci. 1987;76:25–8.

    Article  CAS  PubMed  Google Scholar 

  109. Francoeur ML, Golden GM, Potts RO. Oleic acid: its effects on stratum corneum in relation to (trans)dermal drug delivery. Pharm Res. 1990;7:621–7.

    Article  CAS  PubMed  Google Scholar 

  110. Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm. 2001;212:289–93.

    Article  CAS  PubMed  Google Scholar 

  111. Tsutsumi K, Obata Y, Takayama K, Loftsson T, Nagai T. Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm. 1998;24:757–62.

    Article  CAS  PubMed  Google Scholar 

  112. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11:748–64.

    Article  CAS  PubMed  Google Scholar 

  113. Carvalho FC, Bruschi ML, Evangelista RC, Gremião MPD. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46:1–17.

    Article  CAS  Google Scholar 

  114. Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bio Sci. 2011;3:89–100.

    Article  CAS  Google Scholar 

  115. Mythri G, Kavitha K, Kumar MR, Singh SJ, others. Novel mucoadhesive polymers–a review. 2011.

  116. Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci. 1999;2:53–61.

    CAS  PubMed  Google Scholar 

  117. Su Cha D, Choi JH, Chinnan MS, Park HJ. Antimicrobial films based on Na-alginate and κ-carrageenan. LWT—Food Sci Technol. 2002;35:715–9.

    Article  Google Scholar 

  118. Patel VM, Prajapati BG, Patel MM. Effect of hydrophilic polymers on buccoadhesive Eudragit patches of propranolol hydrochloride using factorial design. AAPS PharmSciTech. 2007;8:E119–26.

    Article  PubMed Central  Google Scholar 

  119. Rathbone M, Senel S, Pather I. Oral mucosal drug delivery and therapy. Springer: New York Heidelberg Dordrecht London; 2015.

  120. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.

    Article  CAS  Google Scholar 

  121. Senel S, Kremer MJ, Kaş S, Wertz PW, Hincal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials. 2000;21:2067–71.

    Article  CAS  PubMed  Google Scholar 

  122. Portero A, Remuñán-López C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharm Res. 2002;19:169–74.

    Article  CAS  PubMed  Google Scholar 

  123. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57:1595–639.

    Article  CAS  PubMed  Google Scholar 

  124. Priya S, Rathnanand M, Nayanabhirama U, Ongole R. Preparation and evaluation of buccal mucoadhesive patch of betamethasone sodium posphate for the treatment of oral submucous fibrosis. J Chem Pharm Res. 2011;3:56–65.

    CAS  Google Scholar 

  125. Nagaraju T, Gowthami R, Rajashekar M, Sandeep S, Mallesham M, Sathish D, et al. Comprehensive review on oral disintegrating films. Curr Drug Deliv. 2013;10:96–108.

    Article  CAS  PubMed  Google Scholar 

  126. Kumar V, Chari R, Sharma VK, Kalonia DS. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water. Int J Pharm. 2011;413:19–28.

    Article  CAS  PubMed  Google Scholar 

  127. Liu X, Zhou P, Tran A, Labuza TP. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems. J Agric Food Chem. 2009;57:2339–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Montenegro-Nicolini acknowledges the funding support from CONICYT 21150995. J. O. Morales thanks the financial support from FONDECYT 11130235 and FONDAP 15130011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier O. Morales.

Additional information

Guest Editors: Jason T. McConville and Javier O. Morales

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenegro-Nicolini, M., Morales, J.O. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech 18, 3–14 (2017). https://doi.org/10.1208/s12249-016-0525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0525-z

KEY WORDS

Navigation