Skip to main content
Log in

Selective and validated spectrophotometric methods for the determination of nicorandil in pharmaceutical formulations

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Two simple and sensitive validated spectrophotometric methods have been described for the assay of nicorandil in drug formulations. Method A is based on the reaction of the drug with phloroglucinol-sulfanilic acid reagent in sulfuric acid medium to give yellow-colored product, which absorbs maximally at 425 nm. Method B uses the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with DL-3,4-dihydroxyphenylalanine (DL-dopa) in the presence of nicorandil as oxidant in sulfuric acid medium to form an intensely colored product having maximum absorbance at 530 nm. Beer's law is obeyed in the concentration range 2.5 to 50.0 and 1.0 to 15.0 μg mL−1 with methods A and B, respectively. Both methods have been successfully applied for the analysis of drug in pharmaceutical formulations. The reliability and the performance of the proposed methods are established by point and interval hypothesis and through recovery studies. The experimental true bias of all samples is smaller than ±2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frampton J, Buckley MM, Fitton A. Nicorandil: a review of its pharmacology and therapeutic efficacy in angina pectoris.Drugs. 1992;44:625–655.

    Article  CAS  PubMed  Google Scholar 

  2. Markham A, Plosker GL, Goa KL. Nicorandil: an updated review of its use in ischaemic heart disease with emphasis on its cardioprotective effects.Drugs. 2000;60:955–974.

    Article  CAS  PubMed  Google Scholar 

  3. Royal Pharmaceutical Society.Martindale: The Extra Pharmacopoeia. 33rd ed. London, UK: Royal Pharmaceutical Society; 2002:939.

    Google Scholar 

  4. Tipre DN, Vavia PR. Degradation kinetic study of nicorandil using HPTLC method.Indian Drugs. 2000;37:412–416.

    CAS  Google Scholar 

  5. Schwende FJ, Lewis RC. Determination of nicorandil in plasma using high-performance liquid chromatography with photoconductivity and ultra violet detection: application to pre-clinical pharmacokinetics in beagle dogs.J Chromatogr B Biomed Sci Appl. 1990;525:151–160.

    Article  CAS  Google Scholar 

  6. Gomiti Y, Furuno K, Eto K, et al. Rapid and simple determination of nicorandil in rat plasma using solid-phase extraction column.J Chromatogr B Biomed Sci Appl. 1990;528:509–516.

    Article  Google Scholar 

  7. Ishizaki T, Chiba K, Suganuma T, Sasaki T, Kamiyama H, Nakano H. Pharmacokinetics of nicorandil, a new coronary vasodilator in dogs.J Pharm Sci. 1984;73:494–498.

    Article  CAS  PubMed  Google Scholar 

  8. Tanikawa M, Uzu M, Ohsawa Y, Fukishima M. Sensitive method for determination of nicorandil in human plasma by reversed phase HPLC with UV detection.J Chromtogr B Biomed Appl. 1993;617:163–167.

    Article  CAS  Google Scholar 

  9. Bachert EL, Fung HL. High performance liquid chromatographic method for stability and pharmacokinetic studies on nicorandil.J Chromatogr B Biomed Appl. 1993;619:336–341.

    Article  CAS  Google Scholar 

  10. Ojha A, Pargal A. Determination of nicorandil concentrations in human plasma using liquid chromatography.J Pharm BiomedAnal. 1999;21:175–178.

    Article  CAS  Google Scholar 

  11. Frydman A. Pharmacokinetic profile of nicorandil in humans: an overview.J Cardiovasc Pharmacol. 1992;20(suppl 3):S34-S44.

    Article  CAS  PubMed  Google Scholar 

  12. Frydman AM, Chapelle P, Dickmann H, et al. Pharmacokinetics of nicorandil.Am J Cardiol. 1989;63:25J-33J.

    Article  CAS  PubMed  Google Scholar 

  13. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufmann L.Chemometrics, A Textbook. Amsterdam, The Netherlands: Elsevier, 1988.

    Google Scholar 

  14. Belamy AJ, Golding P, Ward SJ, inventors. Synthesis of ammonium diaminopicrate from trihydroxybenzene as candidate novel insensitive explosive. UK Patent Application No. GB 2 355 714 (CL C07C211/52) May 2, 2001, Appl. 1999/25, 151, 26 Oct 1999; 18 pp.

  15. Bartsch RA, Hunig S, Quast H. Mechanism of oxidation of 3-methyl-2-benzothiazolinone hydrazone hydrochloride by potassium ferricyanide in aqueous methanol.J Am Chem Soc. 1970;92:6007–6011.

    Article  CAS  Google Scholar 

  16. Gasparic J, Svobodova D, Pospisilova M. Identification of organic compounds. Part LXXXVI. Investigation of the color reaction of phenols with the MBTH (3-methyl-2-benzothiazolinone hydrazone hydrochloride) reagent.Mikrochim Acta. 1977;1:241–250.

    Article  CAS  Google Scholar 

  17. Morelli B. Determination of ternary mixtures of antibiotics, by ratiospectra zero-crossing first- and third-derivative spectrophotometry.J Pharm Biomed Anal. 1995;13:219–277.

    Article  CAS  PubMed  Google Scholar 

  18. Morelli B. “Zero crossing” Derivative spectrophotometric determination of mixtures of cephapirin sodium and cefuroxime sodium in pure form and in injections.Analyst. 1988;113:1077–1082.

    Article  CAS  PubMed  Google Scholar 

  19. Morelli B. Determination of a tertiary mixture of pencillin-G sodium salt, pencillin-G procain salt and dihyro streptomycin sulphate by third-derivative spectrophotometry.Takanta. 1994;41:479–483.

    CAS  Google Scholar 

  20. Morelli B. Simultaneous determination of ceftriaxone and streptomycin in mixture by ratio-spectra, 2nd derivative and zero crossing 3rd derivative spectrophotometry.Talanta. 1994;41:673–683.

    Article  CAS  PubMed  Google Scholar 

  21. Nallimov VV.The Application of Mathematical Statistics to Chemical Analysis. Oxford, UK: Pergamon Press; 1963.

    Google Scholar 

  22. Miller JN. Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods.Analysis. 1991;116:3–14.

    CAS  Google Scholar 

  23. Cassidy R, Janoski M. Is your calibration linear?LC GC. 1992;10:692–695.

    CAS  Google Scholar 

  24. Christian GD.Analytical Chemistry. 4th ed. Singapore: John Wiley and Sons; 1994.

    Google Scholar 

  25. Hartmann C, Smeyers-Verbeke J, Pinninckx W, Heyden YV, Vankeerberghen P, Massart DL. Reappraisal of hypothesis testing for method validation: detection of systematic error by comparing the means of two methods or of two laboratories.Anal Chem. 1995;67:4491–4499.

    Article  CAS  Google Scholar 

  26. Jelliffe RW, Maire P, Sattler F, Gomis P, Tahani B. Adaptive control of drug dosage regimens: basic foundations, relevant issues and clinical examples.Int J Biomed Comput. 1994;36:1–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafisur Rahman.

Additional information

Published: November 30, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, N., Ahmad, Y. & Azmi, S.N.H. Selective and validated spectrophotometric methods for the determination of nicorandil in pharmaceutical formulations. AAPS J 6, 34 (2004). https://doi.org/10.1208/aapsj060434

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj060434

Keywords

Navigation