Skip to main content
Log in

Detergent-resistant membrane microdomains in the disposition of the lipid signaling molecule anandamide

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The endogenous cannabinoid anandamide is an agonist of the cannabinoid receptors CB1 and CB2, as well as transient receptor potential vanilloid type 1 and type 4 ion channels. In recent years, there has been a great deal of interest in the cellular processes regulating the signaling of endocannabinoids such as anandamide. This is due largely to evidence that augmentation of cannabinergic tone might be therapeutically beneficial in the treatment of multiple disease states such as chronic pain, anxiety, multiple sclerosis, and neuropsychiatric disorders. Of particular interest are the cellular processes that regulate the cellular accumulation and metabolism of anandamide. Characterization of the process by which anandamide is internalized and metabolized by the cell may identify drug targets useful in the positive modulation of cannabinergic tone. Recently, we reported that detergent-resistant membrane microdomains known as lipid rafts play a role in the cellular accumulation of anandamide by mediating an endocytic process responsible for anandamide internalization. The enzyme primarily responsible for anandamide metabolism, fatty acid amide hydrolase, is excluded from lipid rafts. However, the metabolites of anandamide accumulate in these detergentresistant membrane microdomains. There is some preliminary evidence that makes it reasonable to propose that anandamide metabolites enriched in lipid rafts may act as precursors to anadamide synthesis. Overall, experimental evidence is mounting that detergent-resistant membrane microdomains such as lipid rafts may play a role in the cellular regulation of anandamide inactivation and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Howlett AC. Pharmacology of cannabinoid receptors.Annu Rev Pharmacol Toxicol. 1995;35:607–634.

    Article  CAS  PubMed  Google Scholar 

  2. Di Marzo V. ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties; biochemistry and possible physiopathological relevance.Biochim Biophys Acta. 1998;1392:153–175.

    Article  PubMed  Google Scholar 

  3. Porter AC, Felder CC. The endocannabinoid nervous system: unique opportunities for therapeutic intervention.Pharmacol Ther. 2001;90:45–60.

    Article  CAS  PubMed  Google Scholar 

  4. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science. 1992;258:1946–1949.

    Article  CAS  PubMed  Google Scholar 

  5. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain.Biochem Biophys Res Commun. 1995;215:89–97.

    Article  CAS  PubMed  Google Scholar 

  6. Hanus L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor.Proc Natl Acad Sci USA. 2001;98:3662–3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor.J Pharmacol Exp Ther. 2003;301:1020–1024.

    Article  Google Scholar 

  8. McVey DC, Schmid PC, Schmid HH, Vigna SR. Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1).J Pharmacol Exp Ther. 2003;304:713–722.

    Article  CAS  PubMed  Google Scholar 

  9. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. TRPV4 calcium entry channel: a paradigm for gating diversity.Am J Physiol Cell Physiol. 2004;286:C195-C205.

    Article  CAS  PubMed  Google Scholar 

  10. Ueda N, Yamamoto S. Anandamide amidohydrolase (fatty acid amide hydrolase).Prostaglandins Other Lipid Mediat. 2000;61:19–28.

    Article  CAS  PubMed  Google Scholar 

  11. Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation.Proc Natl Acad Sci USA. 2002;99:10819–10824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation.Chem Phys Lipids. 2002;121:149–158.

    Article  CAS  PubMed  Google Scholar 

  13. Jarrhian A, Watts VJ, Barker EL. D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor.J Pharmacol Exp Ther. 2004;308:880–886.

    Article  Google Scholar 

  14. Beltramo M, de Fonseca FR, Navarro M, et al. Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor.J Neurosci. 2000;20:3401–3407.

    CAS  PubMed  Google Scholar 

  15. Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase.Proc Natl Acad Sci USA. 2001;98:9371–9376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Lago E, Ligresti A, Ortar G, et al. In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake.Eur J Pharmacol. 2004;484:249–257.

    Article  PubMed  Google Scholar 

  17. Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, et al. Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors.Eur J Med Chem. 2003;38:403–412.

    Article  CAS  PubMed  Google Scholar 

  18. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis.Nat Med. 2003;9:76–81.

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz-Llorente L, Ortega-Gutierrez S, Viso A, et al. Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study.Br J Pharmacol 2004;141:457–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown DA, London E Structure and function of sphingolipid- and cholesterol-rich membrane rafts.J Biol Chem. 2000;275:17221–17224.

    Article  CAS  PubMed  Google Scholar 

  21. Pike LJ, Han X, Chung KN, Gross RW. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis.Biochemistry. 2002;41:2075–2088.

    Article  CAS  PubMed  Google Scholar 

  22. London E, Brown DA. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).Biochim Biophys Acta. 2000;1508:182–195.

    Article  CAS  PubMed  Google Scholar 

  23. Razani B, Woodman SE, Lisanti MP. Caveolae: from cell bioloty to animal physiology.Pharmacol Rev. 2002;54:431–467.

    Article  CAS  PubMed  Google Scholar 

  24. McFarland MJ, Barker EL. Lipid rafts: a nexus for endocannabinoid signaling?Life Sci. 2005;77:1640–1650.

    Article  CAS  PubMed  Google Scholar 

  25. McFarland MJ, Porter AC, Rakhshan FR, Rawat DS, Gibbs RA, Barker EL. A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide.J Biol Chem. 2004;279:41991–41997.

    Article  CAS  PubMed  Google Scholar 

  26. Sarker KP, Maruyama I. Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: possible involvement of lipid rafts.Cell Mol Life Sci. 2003;60:1200–1208.

    Article  CAS  PubMed  Google Scholar 

  27. Bari M, Battista N, Fezza F, Finazzi-Agro A, Maccarrone M. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells: implications for anandamide-induced apoptosis.J Biol Chem. 2005;280:12212–12220.

    Article  CAS  PubMed  Google Scholar 

  28. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition.Science. 1997;277:1094–1097.

    Article  CAS  PubMed  Google Scholar 

  29. Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons.Nature. 1994;372:686–691.

    Article  PubMed  Google Scholar 

  30. Hillard CJ, Edgemond WS, Jarrahian A, Campbell WB. Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion.J Neurochem. 1997;69:631–638.

    Article  CAS  PubMed  Google Scholar 

  31. Maccarrone M, van der Stelt M, Rossi A, Veldink GA, Vliegenthart JF, Agro AF. Anandamide hydrolysis by human cells in culture and brain.J Biol Chem. 1998;273:32332–32339.

    Article  CAS  PubMed  Google Scholar 

  32. Rakhshan F, Day TA, Blakely RD, Barker EL. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells.J Pharmacol Exp Ther. 2000;292:960–967.

    CAS  PubMed  Google Scholar 

  33. Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch DG. Evidence against the presence of an anandamide transporter.Proc Natl Acad Sci USA. 2003;100:4269–4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ligresti A, Morera E, Van Der Stelt M, et al. Further evidence for the existence of a specific process for the membrane transport of anandamide.Biochem J. 2004;380:265–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ortar G, Ligresti A, De Petrocellis L, Moreara E, Di Marzo V. Novel selective and metabolically stable inhibitors of anandamide cellular uptake.Biochem Pharmacol. 2003;65:1473–1481.

    Article  CAS  PubMed  Google Scholar 

  36. Hillard CJ, Jarrahian A. Cellular accumulation of anandamide: consensus and controversy.Br J Pharmacol. 2003;140:802–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ortega-Gutierrez S, Hawkins EG, Viso A, Lopez-Rodriguez ML, Cravatt BF. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake.Biochemistry. 2004;43:8184–8190.

    Article  CAS  PubMed  Google Scholar 

  38. McFarland MJ, Porter AC, Rakhshan FR, Rawat DS, Gibbs RA, Barker EL. A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide.J Biol Chem. 2004;279:41991–41997.

    Article  CAS  PubMed  Google Scholar 

  39. Muthian S, Nithipatikom K, Campbell WB, Hillard CJ. Synthesis and characterization of a fluorescent substrate for the N-arachidonoylethanolamine (anandamide) transmembrane carrier.J Pharmacol Exp Ther. 2000;293:289–295.

    CAS  PubMed  Google Scholar 

  40. Bari M, Paradisi A, Pasquariello N, Maccarrone M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells.J Neurosci Res. 2005;81:275–283.

    Article  CAS  PubMed  Google Scholar 

  41. Sandberg A, Fowler CJ. Measurement of saturable and nonsaturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin.Chem Phys Lipids. 2005;134:131–139.

    Article  CAS  PubMed  Google Scholar 

  42. Egertova M, Giang DK, Cravatt BF, Elphick MR. A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain.Proc Biol Sci. 1998;265:2081–2085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.Nature. 1996;384:83–87.

    Article  CAS  PubMed  Google Scholar 

  44. Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases.Proc Natl Acad Sci USA. 1997;94:2238–2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Day TA, Rakhshan F, Deutsch DG, Barker EL. Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide.Mol Pharmacol. 2001;59:1369–1375.

    CAS  PubMed  Google Scholar 

  46. Cadas H, di Tomaso E, Piomelli D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain.J Neurosci. 1997;17:1226–1242.

    CAS  PubMed  Google Scholar 

  47. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners.J Biol Chem. 2004;279:5298–5305.

    Article  CAS  PubMed  Google Scholar 

  48. Czarny M, Lavie Y, Fiucci G, Liscovitch M. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains: modulation by caveolin-1 expression and caveolin-182-101.J Biol Chem. 199;274:2717–2724.

    Article  Google Scholar 

  49. Dobrowsky RT. Sphingolipid signalling domains floating on rafts or buried in caves?Cell Signal. 2000;12:81–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFarland, M.J., Terebova, E.A. & Barker, E.L. Detergent-resistant membrane microdomains in the disposition of the lipid signaling molecule anandamide. AAPS J 8, 11 (2006). https://doi.org/10.1208/aapsj080111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080111

Keywords

Navigation