Skip to main content
Log in

Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out. Characterization of the nano-assemblies was accomplished by measuring the particle size and surface charge. Morphological characteristics and lipid organization were studied by small angle X-ray scattering technique. Lipid monolayers were studied using a Langmuir-Blodgett trough. The highest activity of glycyl-lysine modified gemini surfactants was observed with the 16-carbon tail compound at 2.5 N/P ratio, showing a 5- to 10-fold increase in the level of reporter protein compared to the 12 and 18:1 carbon tail compounds. This ratio is significantly lower compared to the previously studied gemini surfactants with alkyl or amino- spacers. In addition, the 16-carbon tail compound exhibited the highest cell viability (85%). This high efficiency is attributed to the lowest critical micelle concentration of the 16-tail gemini surfactant and a balanced packing of the nanoparticles by mixing a saturated and unsaturated lipid together. At the optimal N/P ratio, all nanoparticles exhibited an inverted hexagonal lipid assembly. The results show that the length and nature of the tail of the gemini surfactants play an important role in determining the transgene efficiency of the delivery system. We demonstrated here that the interplay between the headgroup and the nature of tail is specific to each series, thus in the process of rational design, the contribution of the latter should be assessed in the appropriate context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.

    Article  CAS  PubMed  Google Scholar 

  2. Gene Therapy Clinical Trials Worldwide John Wiley and Sons Ltd. [cited 2014 May 2015]. Available from: http://www.wiley.com/legacy/wileychi/genmed/clinical/.

  3. Ilies M, Seitz WA, Balaban AT. Cationic lipids in gene delivery: principles, vector design and therapeutical applications. Curr Pharm Design. 2002;8(27):2441–73.

    Article  CAS  Google Scholar 

  4. Karmali PP, Chaudhuri A. Cationic liposomes as non‐viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev. 2007;27(5):696–722.

    Article  CAS  PubMed  Google Scholar 

  5. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. PNAS. 1987;84(21):7413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menger FM, Littau C. Gemini-surfactants: synthesis and properties. J Am Chem Soc. 1991;113(4):1451–2.

    Article  CAS  Google Scholar 

  7. Bazylińska U, Saczko J. Nanoemulsion-templated polylelectrolyte multifunctional nanocapsules for DNA entrapment and bioimaging. Colloids Surf B. 2016;137:191–202.

    Article  Google Scholar 

  8. Wettig S, Verrall R. Thermodynamic studies of aqueous m-s-m gemini surfactant systems. J Colloid Interf Sci. 2001;235(2):310–6.

    Article  CAS  Google Scholar 

  9. Badea I, Verrall R, Baca‐Estrada M, Tikoo S, Rosenberg A, Kumar P, et al. In vivo cutaneous interferon‐γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J Gene Med. 2005;7(9):1200–14.

    Article  CAS  PubMed  Google Scholar 

  10. Foldvari M, Badea I, Wettig S, Verrall R, Bagonluri M. Structural characterization of novel gemini non-viral DNA delivery systems for cutaneous gene therapy. J Exp Nanosci. 2006;1(2):165–76.

    Article  CAS  Google Scholar 

  11. Wang C, Li X, Wettig SD, Badea I, Foldvari M, Verrall RE. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid. PCCP. 2007;9(13):1616–28.

    Article  CAS  PubMed  Google Scholar 

  12. Buse J, Badea I, Verrall RE, El-Aneed A. Tandem mass spectrometric analysis of the novel gemini surfactant nanoparticle families G12-s and G18: 1-s. Spectrosc Lett. 2010;43(6):447–57.

    Article  CAS  Google Scholar 

  13. Wettig SD, Badea I, Donkuru M, Verrall RE, Foldvari M. Structural and transfection properties of amine‐substituted gemini surfactant‐based nanoparticles. J Gene Med. 2007;9(8):649–58.

    Article  CAS  PubMed  Google Scholar 

  14. Yang P, Singh J, Wettig S, Foldvari M, Verrall RE, Badea I. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles. Eur J Pharm Biopharm. 2010;75(3):311–20.

    Article  CAS  PubMed  Google Scholar 

  15. Singh J, Yang P, Michel D, Verrall ER, Foldvari M, Badea I. Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents. Curr Drug Deliv. 2011;8(3):299–306.

    Article  CAS  PubMed  Google Scholar 

  16. Sandri J, Viala J. Convenient conversion of cis-homoallylic alcohols into corresponding bromides with Ph3PBr2. Synth Commun. 1992;22(20):2945–8.

    Article  CAS  Google Scholar 

  17. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frisch MJGWTH, Schlegel BGE, Scuseria MAR, Cheeseman JR, Scalmani G, Barone V, et al. Gaussian 09, Revision D.01. Wallingford: Gaussian, Inc; 2013.

    Google Scholar 

  19. Matulis D, Rouzina I, Bloomfield VA. Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity. J Am Chem Soc. 2002;124(25):7331–42.

    Article  CAS  PubMed  Google Scholar 

  20. Hayakawa K, Santerre JP, Kwak JC. The binding of cationic surfactants by DNA. Biophys Chem. 1983;17(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  21. Rudiuk S, Yoshikawa K, Baigl D. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length. J Colloid Interf Sci. 2012;368(1):372–7.

    Article  CAS  Google Scholar 

  22. Donkuru M, Wettig SD, Verrall RE, Badea I, Foldvari M. Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. J Mater Chem. 2012;22(13):6232–44.

    Article  CAS  Google Scholar 

  23. Dias RS, Svingen R, Gustavsson B, Lindman B, Miguel MG, Åkerman B. Electrophoretic properties of complexes between DNA and the cationic surfactant cetyltrimethylammonium bromide. Electrophoresis. 2005;26(15):2908–17.

    Article  CAS  PubMed  Google Scholar 

  24. Dias R, Mel’nikov S, Lindman B, Miguel MG. DNA phase behavior in the presence of oppositely charged surfactants. Langmuir. 2000;16(24):9577–83.

    Article  CAS  Google Scholar 

  25. Zana R, Benrraou M, Rueff R. Alkanediyl-. alpha., omega.-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir. 1991;7(6):1072–5.

    Article  CAS  Google Scholar 

  26. Kuiper JM, Buwalda RT, Hulst R, Engberts JB. Novel pyridinium surfactants with unsaturated alkyl chains: aggregation behavior and interactions with methyl orange in aqueous solution. Langmuir. 2001;17(17):5216–24.

    Article  CAS  Google Scholar 

  27. Bijma K, Engberts JB, Haandrikman G, van Os NM, Blandamer MJ, Butt MD, et al. Thermodynamics of micelle formation by 1-methyl-4-alkylpyridinium halides. Langmuir. 1994;10(8):2578–82.

    Article  CAS  Google Scholar 

  28. Dauty E, Remy J-S, Blessing T, Behr J-P. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc. 2001;123(38):9227–34.

    Article  CAS  PubMed  Google Scholar 

  29. Moghaddam B, McNeil SE, Zheng Q, Mohammed AR, Perrie Y. Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy. Pharmaceutics. 2011;3(4):848–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brgles M, Šantak M, Halassy B, Forcic D, Tomašić J. Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency. Int J Nanomed. 2012;7:393.

    Article  CAS  Google Scholar 

  31. Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol. 2014(0):1–9.

  32. Prabha S, Zhou W-Z, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. I Int J Pharm. 2002;244(1):105–15.

    Article  CAS  PubMed  Google Scholar 

  33. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  CAS  PubMed  Google Scholar 

  35. Singh J, Michel D, Chitanda JM, Verrall RE, Badea I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. J Nanobiotechnol. 2012;10(7).

  36. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577.

    Article  Google Scholar 

  37. Myers D. Surfaces, interfaces and colloids. New York: Wiley-Vch; 1990.

    Google Scholar 

  38. Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem. 1997;51(1-2):34–6.

    CAS  Google Scholar 

  39. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Molec Cell Biol. 2004;5(2):121–32.

    Article  CAS  Google Scholar 

  40. Turner DC, Gruner SM. X-ray diffraction reconstruction of the inverted hexagonal (HII) phase in lipid-water systems. Biochemistry. 1992;31(5):1340–55.

    Article  CAS  PubMed  Google Scholar 

  41. Aswal V, Goyal P, De S, Bhattacharya S, Amenitsch H, Bernstorff S. Small-angle X-ray scattering from micellar solutions of gemini surfactants. Chem Phys Lett. 2000;329(5):336–40.

    Article  CAS  Google Scholar 

  42. Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release. 2007;123(3):184–94.

    Article  CAS  PubMed  Google Scholar 

  43. Ristori S, Ciani L, Candiani G, Battistini C, Frati A, Grillo I, et al. Complexing a small interfering RNA with divalent cationic surfactants. Soft Matter. 2012;8(3):749–56.

    Article  CAS  Google Scholar 

  44. Falsini S, Ristori S, Ciani L, Di Cola E, Supuran CT, Arcangeli A, et al. Time resolved SAXS to study the complexation of siRNA with cationic micelles of divalent surfactants. Soft Matter. 2014;10(13):2226–33.

    Article  CAS  PubMed  Google Scholar 

  45. MCLoughlin D, Delsanti M, Albouy P, Langevin D. Aggregates formation between short DNA fragments and cationic surfactants. Mol Phys. 2005;103(21-23):3125–39.

    Article  CAS  Google Scholar 

  46. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2. 1976;72:1525–68.

    Article  Google Scholar 

  47. Kumar V. Complementary molecular shapes and additivity of the packing parameter of lipids. PNAS. 1991;88(2):444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanford C. The hydrophobic effect: formation of micelles and biological membranes 2d Ed: J. Wiley. 1980.

  49. Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir. 2002;18(1):31–8.

    Article  CAS  Google Scholar 

  50. Hiemenz PC, Rajagopalan R. Principles of colloid and surface chemistry, Third Edition, revised and expanded: Taylor & Francis; 1997.

  51. Wang H, Wettig SD. Synthesis and aggregation properties of dissymmetric phytanyl-gemini surfactants for use as improved DNA transfection vectors. PCCP. 2011;13(2):637–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mays Al-Dulaymi is a fellow of the Canadian Institutes of Health Research Training grant in Health Research Using Synchrotron Techniques (CIHR-THRUST) and thanks the program for financial support. The authors acknowledge Mr. McDonald Donkuru, Dr. M. Jake Pushie, Dr. Masoomeh Poorghorban, and Mr. Osama Alaidi for the assistance on software training and experimental runs. The SAXS work was carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory, and an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, the National Institutes of Health (NIH), and the National Institute of General Medical Sciences (NIGMS; including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. We acknowledge the assistance of Dr. Thomas Weiss, SSRL, with instrument setting and data collection. We thank Dr. Matthew F. Paige for facilitating the access to the Langmuir minitrough system.

This work was funded by the Saskatchewan Health Research Foundation, Natural Sciences and Engineering Research Council and The College of Pharmacy and Nutrition, University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildiko Badea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dulaymi, M.A., Chitanda, J.M., Mohammed-Saeid, W. et al. Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity. AAPS J 18, 1168–1181 (2016). https://doi.org/10.1208/s12248-016-9906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9906-1

KEY WORDS

Navigation