Skip to main content

Advertisement

Log in

Potential of Cyclodextrin Complexation and Liposomes in Topical Delivery of Ketorolac: In Vitro and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this investigation was to evaluate the effect of delivery strategies such as cyclodextrin complexation and liposomes on the topical delivery of ketorolac acid (KTRA) and ketorolac tromethamine. Ketorolac acid–hydroxypropyl-β-cyclodextrin solid dispersions (KTRA-CD) were prepared by kneading method. The liposomes containing ketorolac tromethamine (KTRM) and KTRA-CD were prepared. The in vitro permeation of KTRM solution, KTRA solution, KTRA-CD, and liposomes containing KTRM or KTRA-CD through guinea pig skin was evaluated. The anti-inflammatory activity of the topically applied KTRA-CD gel (containing 1% w/w KTRA) was compared to that of orally delivered KTRM solution. The KTRA-CD demonstrated significantly higher transdermal transport of ketorolac as compared to all other systems whereas liposomes significantly reduced the transport of ketorolac. The anti-inflammatory activity of the topically applied KTRA-CD gel was similar to that of the orally administered KTRM. Thus, cyclodextrin complexation enabled effective transdermal delivery of the ketorolac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.M. Buckley, and R.N. Brogden. Ketorolac: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs. 39:86–109 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. J.R. DeAndrade, M. Maslanka, T. Maneatis, L. Bynum, and M. Burchmore. The use of ketorolac in the management of postoperative pain. Orthopedics. 17:157–166 (1994).

    PubMed  CAS  Google Scholar 

  3. J.C. Gillis, and R.N. Brogden. Ketorolac: a reappraisal of its pharmacodynamic and pharmacokinetic properties and therapeutic use in pain management. Drugs. 53:139–188 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. D.I. Reinhart. Minimizing the adverse effects of ketorolac. Drug Safety. 22:487–497 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. Y.A. Cho, and H.S. Gwak. Transdermal delivery of ketorolac tromethamine: effects of vehicles and penetration enhancers. Drug Dev. Ind. Pharm. 30:557–564 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. I.A. Alsarra, A.A. Bosela, S.M. Ahmed, and G.M. Mahrous. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur. J. Pharm. Biopharm. 59:485–490 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. B.Y. Kim, H.J. Doh, T.N. Le, W.J. Cho, C.S. Yong, H.G. Choi, J.S. Kim, C.H. Lee, and D.D. Kim. Ketorolac amide prodrugs for transdermal delivery: stability and in vitro rat skin permeation studies. Int. J. Pharm. 293:193–202 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. K. Park, D. Verotta, S.K. Gupta, and L.B. Sheiner. Passive versus electrotransport-faciliated transdermal absorption of ketorolac. Clin. Pharmacol. Ther. 63:303–315 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. S.B. Tiwari, and N. Udupa. Investigation into the potential of iontophoresis facilitated delivery of ketorolac. Int. J. Pharm. 260:93–103 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S.B. Tiwari, and R.M. Pai. Influence of ultrasound on the percutaneous absorption of ketorolac tromethamine in vitro across rat skin. Drug Deliv. 11:47–51 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. M. Masson, T. Loftsson, G. Masson, and E. Stefansson. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J. Control. Rel. 59:107–118 (1999).

    Article  CAS  Google Scholar 

  12. T. Loftsson, and M. Masson. Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm. 225:15–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. M.M.A. Elsayed, O.Y. Abdallah, V.F. Naggar, and N.M. Khalafallah. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm. 332:1–16 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. M.S. Nagarsenker, R.N. Meshram, and G. Ramprakash. Solid dispersion of hydroxypropyl β-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J. Pharm. Pharmacol. 52:949–956 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. C.A. Ventura, S. Tommasini, A. Falcone, I. Giannone, D. Paolino, V. Sdrafkakis, M.R. Mondello, and G. Puglisi. Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Int. J. Pharm. 314:37–45 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. F. Maestrelli, M.L. Gonzalez-Rodrıguez, A.M. Rabasco, and P. Mura. Preparation and characterisation of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. Int. J. Pharm. 298:55–67 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Phospholipid GmBH (Germany), Cerestar (USA) and Sun Pharma (India) for the gift samples of Phospholipon 90 and 90H, HPBCD and ketorolac tromethamine, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nagarsenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarsenker, M.S., Amin, L. & Date, A.A. Potential of Cyclodextrin Complexation and Liposomes in Topical Delivery of Ketorolac: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 9, 1165–1170 (2008). https://doi.org/10.1208/s12249-008-9157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9157-2

Key words

Navigation