Skip to main content
Log in

Preparation and Evaluation of Self-nanoemulsifying Tablets of Carvedilol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to combine the advantages of self-nanoemulsifying drug delivery systems and tablets as a conventional dosage form emphasizing the excipients’ effect on the development of a new dosage form. Systems composed of HCO-40, Transcutol® HP, and medium-chain triglyceride were prepared. Essential properties of the prepared systems regarding carvedilol solubility, a model drug, and self-emulsification time were determined. In order to optimize self-nanoemulsifying drug delivery systems (SNEDDS), formulation dispersion–drug precipitation test was performed in the absence and presence of cellulosic polymers. Furthermore, SNEDDS was loaded onto liquisolid powders. P-glycoprotein (P-gp) activity of the selected SNEDDS was tested using HCT-116 cells. Carvedilol showed acceptable solubility in the selected excipients. It also demonstrated improvement in the stability upon dilution with aqueous media in the presence of cellulosic polymers. Use of granulated silicon dioxide improved the physical properties of liquisolid powders containing SNEDDS. It improved the compressibility of the selected powders and the tested SNEDDS showed marked P-gp inhibition activity. Prepared self-nanoemulsifying tablet produced acceptable properties of immediate-release dosage forms and expected to increase the bioavailability of carvedilol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Weuts, D. Kempen, A. Decorte, G. Verreck, J. Peeters, M. Brewster, and G. Van den Mooter. Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64. Eur. J. Pharm. Sci. 22:375–385 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. H. O. Ammar, H. A. Salama, M. Ghorab, and A. A. Mahmoud. Implication of inclusion complexation of glimepiride in cyclodextrin-polymer systems on its dissolution, stability and therapeutic efficacy. Int. J. Pharm. 320:53–57 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. G. Muhrer, U. Meier, F. Fusaro, S. Albano, and M. Mazzotti. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int. J. Pharm. 308:69–83 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. J. M. Odeberg, P. Kaufmann, K. G. Kroon, and P. Hoglund. Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur. J. Pharm. Sci. 20:375–382 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. T. Gershanik, and S. Benita. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 50:179–188 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. R. N. Gursoy, and S. Benita. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 58:173–182 (2004).

    Article  PubMed  Google Scholar 

  7. C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29:278–287 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. C. W. Pouton. Formulation of self-emulsifying drug delivery systems. Adv. Drug Deliv. Rev. 25:47–58 (1997).

    Article  CAS  Google Scholar 

  9. M. Newton, J. Petersson, F. Podczeck, A. Clarke, and S. Booth. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. J. Pharm. Sci. 90:987–995 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. C. Tuleu, M. Newton, J. Rose, D. Euler, R. Saklatvala, A. Clarke, and S. Booth. Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. J. Pharm. Sci. 93:1495–1502 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. E. Franceschinis, D. Voinovich, M. Grassi, B. Perissutti, J. Filipovic-Grcic, A. Martinac, and F. Meriani-Merlo. Self-emulsifying pellets prepared by wet granulation in high-shear mixer: influence of formulation variables and preliminary study on the in vitro absorption. Int. J. Pharm. 291:87–97 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Newton, M. Bazzigialuppi, F. Podczeck, S. Booth, and A. Clarke. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose. Eur. J. Pharm. Sci. 26:176–183 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. J. M. Newton, A. Godinho, A. P. Clarke, and S. W. Booth. Formulation variables on pellets containing self-emulsifying systems. Pharm. Technol. Eur. 17:29–32 (2005).

    CAS  Google Scholar 

  14. S. Nazzal, M. Nutan, A. Palamakula, R. Shah, A. A. Zaghloul, and M. A. Khan. Optimization of a self-nanoemulsified tablet dosage form of ubiquinone using response surface methodology: effect of formulation ingredients. Int. J. Pharm. 240:103–114 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm. 1:85–96 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. R. L. Talbert. Pharmacokinetics and pharmacodynamics of beta blockers in heart failure. Heart Fail. Rev. 9:131–137 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. W. H. Frishman. Carvedilol. Drug Therapy. 339:1759–1765 (1998).

    CAS  Google Scholar 

  18. T. Giessmann, C. Modess, U. Hecker, M. Zschiesche, P. Dazert, C. Kunert-Keil, R. Warzok, G. Engel, W. Weitschies, I. Cascorbi, H. K. Kroemer, and W. Siegmund. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin. Pharmacol. Ther. 75:213–222 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. X. Wen, F. Tan, Z. Jing, and Z. Liu. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharm. Biomed. Anal. 34:517–523 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. K. Bogman, F. Erne-Brand, J. Alsenz, and J. Drewe. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci. 92:1250–1261 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. S. Yang, R. N. Gursoy, G. Lambert, and S. Benita. Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors. Pharm. Res. 21:261–270 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. H. Shen, and M. Zhong. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J. Pharm. Pharmacol. 58:1183–1191 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. T. Gershanik, E. Haltner, C. M. Lehr, and S. Benita. Charge-dependent interaction of self-emulsifying oil formulations with Caco-2 cells monolayers: binding, effects on barrier function and cytotoxicity. Int. J. Pharm. 211:29–36 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Tayrouz, R. Ding, J. Burhenne, K. D. Riedel, J. Weiss, T. Hoppe-Tichy, W. E. Haefeli, and G. Mikus. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40. Clin. Pharmacol. Ther. 73:397–405 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. C. J. Porter, and W. N. Charman. In vitro assessment of oral lipid based formulations. Adv. Drug. Deliv. Rev. 1Suppl 50:S127–S147 (2001).

    Article  Google Scholar 

  26. G. Cornaire, J. Woodley, P. Hermann, A. Cloarec, C. Arellano, and G. Houin. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm. 278:119–131 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Grovea, A. Müllertzb, J. L. Nielsenc, and P. Pedersen. Bioavailability of seocalcitol II: development and characterisation of self-microemulsifying drug delivery systems (SMEDDS) for oral administration containing medium and long chain triglycerides. Eur. J. Pharm. Sci. 28:233–242 (2006).

    Article  Google Scholar 

  28. S. Cui, C. Zhao, X. Tang, D. Chen, and Z. He. Study on the bioavailability of puerarin from Pueraria lobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatography–mass spectrometry. Biomed. Chromatogr. 19:375–378 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. J. Y. Hong, J. K. Kim, Y. K. Song, J. S. Park, and C. K. Kim. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control Release. 110:332–338 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. P. Gao, B. D. Rush, W. P. Pfund, T. Huang, J. M. Bauer, W. Morozowich, M. S. Kuo, and M. J. Hageman. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J. Pharm. Sci. 92:2386–2398 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. S.-M. Khoo, A. J. Humberstone, C. J. H. Porter, G. A. Edwards, and W. N. Charman. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm. 167:155–164 (1998).

    Article  CAS  Google Scholar 

  32. B. K. Kang, J. S. Lee, S. K. Chon, S. Y. Jeong, S. H. Yuk, G. Khang, H. B. Lee, and S. H. Cho. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274:65–73 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. P. Li, A. Ghosh, R. F. Wagner, S. Krill, Y. M. Joshi, and A. T. Serajuddin. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 288:27–34 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. N. Hasan, S. H. Moss, and C. W. Pouton. Through, C. W. Pouton Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29:278–287 (2006).

    Article  Google Scholar 

  35. S. Spireas, S. Sadu, and R. Grover. In vitro release evaluation of hydrocortisone liquisolid tablets. J. Pharm. Sci. 87:867–872 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. J. N. Staniforth. PharmaceuticsIn M. E. Aulton (ed.), The science of dosage form design, Churchill, Livingstone, 1988, p. 610.

    Google Scholar 

  37. P. J. Sinko (ed.). Martin’s physical pharmacy and biopharmaceutical sciences, 5th ed., Lippincott Williams &Wilkins, Philadelphia, 2006, p. 558.

    Google Scholar 

  38. G. Abdelbary, P. Prinderre, C. Eouani, J. Joachim, J. P. Reynier, and P. Piccerelle. The preparation of orally disintegrating tablets using a hydrophilic waxy binder. Int. J. Pharm. 278:423–433 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. M.-E. Chateau, L. Galet, Y. Soudais, and J. Fages. Processing a detergent powder formulation: direct compression, and high shear wet granulation followed by compression. Powder Technol. 157:191–198 (2005).

    Article  CAS  Google Scholar 

  40. British Pharmacopoeia Commission. British pharmacopoeia 2002, Her Majesty's Stationary Office, London, 2002.

    Google Scholar 

  41. Council of Europe. European pharmacopoeia, 5th ed., European Directorate for the Quality of Medicines, Strasbourg, 2005.

    Google Scholar 

  42. J. C. Smith, G. Tarocco, F. Merazz, and U. Salzmann. Are generic formulations of carvedilol of inferior pharmaceutical quality compared with the branded formulation? Curr. Med. Res. Opin. 22:709–720 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. US Pharmacopoeia Convention. United States Pharmacopoeia, 3rd ed., US Pharmacopoeia Convention, Rockville, 2002.

    Google Scholar 

  44. M. B. Hansen, S. E. Nielsen, and K. Berg. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 12:203–210 (1989).

    Article  Google Scholar 

  45. S.-W. Wang, J. Monagle, C. McNulty, D. Putnam, and H. Chen. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J. Pharm. Sci. 93:2755–2767 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. T. C. Chou, and P. Talalay. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme. Regul. 22:27–55 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. T. C. Chou, and P. Talaly. A simple generalized equation for the analysis of multiple inhibitions of Michaelis–Menten kinetic systems. J. Biol. Chem. 252:6438–6442 (1977).

    PubMed  CAS  Google Scholar 

  48. M. Y. Levy, and S. Benita. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm. 66:29–37 (1990).

    Article  CAS  Google Scholar 

  49. E. S. Kostewicz, M. Wunderlich, U. Brauns, R. Becker, T. Bock, and J. B. Dressman. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J. Pharm. Pharmacol. 56:43–51 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. K. Nolte, G. Backfisch, and R. Neidlein. In vitro absorption studies with carvedilol using a new model with porcine intestine called BM-RIMO (Boehringer–Mannheim ring model). Arzneimittelforschung. 49:745–749 (1999).

    PubMed  CAS  Google Scholar 

  51. S. Stegemanna, F. Leveillerb, D. Franchic, H. de Jongd, and H. Lindén. When poor solubility becomes an issue: from early stage to proof of concept. Eur. J. Pharm. Sci. 31:249–261 (2007).

    Article  Google Scholar 

  52. E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. K. Itoh, Y. Tozuka, T. Oguchi, and K. Yamamoto. Improvement of physicochemical properties of N-4472 part I formulation design by using self-microemulsifying system. Int. J. Pharm. 238:153–160 (2002).

    PubMed  CAS  Google Scholar 

  54. P. Gao, M. E. Guyton, T. Huang, J. M. Bauer, K. J. Stefanski, and Q. Lu. Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturable formulations. Drug Dev. Ind. Pharm. 30:221–229 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. L. Cisneros-Zevallos, and J. M. Krochta. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. J. Food Sci. 68:503–510 (2003).

    Article  CAS  Google Scholar 

  56. S. M. Grillo, R. M. Steffenino, D. C. Kunkle, and K. Saraceni. Aqueous maltodextrin and cellulosic polymer film coatings. WO 91/15548. (1991).

  57. S. Naruenartwongsakul, M. S. Chinnan, S. Bhumiratana, and T. Yoovidhya. Pasting characteristics of wheat flour-based batters containing cellulose ethers. Lebensm. Wiss. Technol. 37:489–495 (2004).

    Article  CAS  Google Scholar 

  58. L. Wei, P. Sun, S. Nie, and W. Pan. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev. Ind. Pharm. 31:785–794 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I am very grateful for the Sasol, Gattefosse, and Colorcon companies and Mohamed H. AbouGhaly for providing the required chemicals for my research. I am grateful to Assoc. Prof. Amira M. Gamal-Eldeen, Associate Professor of Genetic Engineering and Biotechnology Division, National Research Center, for her kind help in the toxicological experimental work in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enas A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, E.A., Bendas, E.R. & Mohamed, M.I. Preparation and Evaluation of Self-nanoemulsifying Tablets of Carvedilol. AAPS PharmSciTech 10, 183–192 (2009). https://doi.org/10.1208/s12249-009-9192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9192-7

Key words

Navigation