Skip to main content
Log in

Incorporation in Lipid Microparticles of the UVA Filter, Butyl Methoxydibenzoylmethane Combined with the UVB Filter, Octocrylene: Effect on Photostability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to reduce the photoinstability of butyl methoxydibenzoylmethane (BMDBM), the most widely used UVA filter, by incorporating it in lipid microparticles (LMs) alone or together with the UVB filter octocrylene (OCR), acting also as photostabilizer. Microparticles loaded with BMDBM or with combined BMDBM and OCR were produced by the hot emulsion technique, using glyceryl behenate as lipid material and poloxamer 188 as surfactant. The LMs were characterized by release studies, scanning electron microscopy, and powder X-ray diffractometry. The BMDBM and OCR loading was 15.2% and 10.6%, respectively. In order to reproduce the conditions prevalent in commercial sunscreen products, the photoprotective efficacy of the LMs was evaluated after their introduction in a model cream (oil-in-water emulsion) containing a mixture of UVA and UVB filters. A small but statistically significant decrease in BMDBM photodegradation was obtained when the UVA filter was encapsulated alone into the LMs (the extent of degradation was 28.6% ±2.4 for non-encapsulated BMDBM and 26.0% ±2.5 for BMDBM-loaded microparticles). On the other hand, the co-loading of OCR in the LMs produced a more marked reduction in the light-induced decomposition of microencapsulated BMDBM (the UVA filter loss was 21.5% ±2.2). Therefore, incorporation in lipid microparticles of BMDBM together with the sunscreen OCR is more effective in enhancing the UVA filter photostability than LMs loaded with BMDBM alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaath NA, Shaath M. Recent sunscreen market trends. In: Shaath N, editor. Sunscreens. Boca Raton, FL: Taylor Francis; 2005. p. 929.

    Google Scholar 

  2. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004;195:298–308.

    Article  PubMed  CAS  Google Scholar 

  3. EC Commission Recommendation on the efficacy of sunscreen products and the claims made relating thereto. Official Journal of the European Union, 2006;L.265:39–43.

    Google Scholar 

  4. Nohynek GJ, Schaefer H. Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001;33:285–99.

    Article  PubMed  CAS  Google Scholar 

  5. Agar NS, Halliday GM, Barneston R, Ananthaswamy HN, Wheeler M, Jones AM. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci (USA) 2004;101:4954–9.

    Article  CAS  Google Scholar 

  6. Fourtanier A, Bernerd F, Bouillon C, Marrot L, Moyal D, Seité S. Protection of skin biological targets by different types of sunscreens. Photodermatol Photoimmunol Photomed 2006;22:22–32.

    Article  PubMed  CAS  Google Scholar 

  7. Dondi D, Albini A, Serpone N. Interactions between different UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection. Photochem Photobiol Sci 2006;5:835–43.

    Article  PubMed  CAS  Google Scholar 

  8. Gaspar LR, Maia Campos PMBG. Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm 2006;307:123–8.

    Article  PubMed  CAS  Google Scholar 

  9. Bonda CA. The photostability of organic sunscreen actives. In: Shaath N, editor. Sunscreens. Boca Raton, FL: Taylor Francis; 2005. p. 323–45.

    Google Scholar 

  10. Damiani E, Baschong W, Greci L. UV-filter combinations under UV-A exposure: concomitant quantification of overall spectral stability and molecular integrity. J Photochem Photobiol B 2007;87:95–104.

    Article  PubMed  CAS  Google Scholar 

  11. Steinberg DC. Regulations of sunscreens worldwide. In: Shaath N, editor. Sunscreens. Boca Raton, FL: Taylor Francis; 2005. p. 180–3.

    Google Scholar 

  12. Tarras-Wahlberg N, Stenhagen G, Larkö O, Rosén A, Wennberg AM, Wennerström O. Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J Invest Dermatol 1999;113:547–53.

    Article  PubMed  CAS  Google Scholar 

  13. Chatelain E, Gabard B. Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem Photobiol 2001;74:401–6.

    Article  PubMed  CAS  Google Scholar 

  14. Scalia S, Simeoni S, Barbieri A, Sostero S. Influence of hydroxypropyl-β-cyclodextrin on photo-induced free radical production by the sunscreen agent, butyl-methoxydibenzoylmethane. J Pharm Pharmacol 2002;54:1553–8.

    Article  PubMed  CAS  Google Scholar 

  15. Damiani E, Rosati L, Castagna R, Carloni P, Greci L. Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UV-A irradiation. J Photochem Photobiol B 2006;82:204–13.

    Article  PubMed  CAS  Google Scholar 

  16. Klein K, Palefsky I. Formulating sunscreen products. In: Shaath N, editor. Sunscreens. Boca Raton, FL: Taylor Francis; 2005. p. 356–70.

    Google Scholar 

  17. Herzog B, Mongiat S, Deshayes C, Neuhaus M, Sommer K, Mantler A. In vivo in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxydibenzoylmethane, methylene bis-benzotriazolyl tetramethylbutylphenol or microfine ZnO. Int J Cosmet Sci 2002;24:170–85.

    Article  PubMed  CAS  Google Scholar 

  18. Lapidot N, Gans O, Biagini F, Sosonkin L, Rottman C. Advanced sunscreens: UV absorbers encapsulated in sol-gel glass microcapsules. J Sol-Gel Sci Technol 2003;26:67–72.

    Article  CAS  Google Scholar 

  19. Iannuccelli V, Sala N, Tursilli R, Coppi G, Scalia S. Influence of liposphere preparation on butyl-methoxydibenzoylmethane photostability. Eur J Pharm Biopharm 2006;63:140–5.

    Article  PubMed  CAS  Google Scholar 

  20. Xia Q, Saupe A, Müller RH, Souto EB. Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int J Cosmet Sci 2007;29:473–82.

    Article  PubMed  CAS  Google Scholar 

  21. Yener G, Incegül T, Yener N. Importance of using solid lipid microspheres as carriers for UV filters on the example of octyl methoxy cinnamate. Int J Pharm 2003;258:203–7.

    Article  PubMed  CAS  Google Scholar 

  22. Tursilli R, Piel G, Delattre L, Scalia S. Solid lipid microparticles containing the sunscreen agent, octyl-dimethylaminobenzoate: effect of the vehicle. Eur J Pharm Biopharm 2007;66:483–7.

    Article  PubMed  CAS  Google Scholar 

  23. Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: formulation, preparation, characterization, drug release and applications. Expert Opin Drug Deliv 2005;2:75–87.

    Article  PubMed  CAS  Google Scholar 

  24. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002;54:S131-55.

    Article  PubMed  Google Scholar 

  25. Jee JP, Lim SJ, Park JS, Kim CK. Stabilization of all-trans retinol by loading lipophilic antioxidants in solid lipid nanoparticles. Eur J Pharm Biopharm 2006;63:134–9.

    Article  PubMed  CAS  Google Scholar 

  26. Scalia S, Tursilli R, Sala N, Iannuccelli V. Encapsulation in lipospheres of the complex between butyl methoxydibenzoylmethane and hydroxypropyl-β-cyclodextrin. Int J Pharm 2006;320:79–85.

    Article  PubMed  CAS  Google Scholar 

  27. Simeoni S, Tursilli R, Bianchi A, Scalia S. Assay of common sunscreen agents in suncare products by high-performance liquid chromatography on a cyanopropyl-bonded silica column. J Pharm Biomed Anal 2005;38:250–5.

    Article  PubMed  CAS  Google Scholar 

  28. Diffey BL, Robson J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J Soc Cosmet Chem 1989;40:127–33.

    CAS  Google Scholar 

  29. Nasr M, Mansour S, Mortada ND, El Shamy AA. Lipospheres as carrier for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation. AAPS PharmSciTech 2008;9:154–162.

    Article  PubMed  Google Scholar 

  30. Mehnert W, Mäder K. Solid lipid nanoparticles. Production, characterization and applications. Adv Drug Deliv Rev 2001;47:165–96.

    Article  PubMed  CAS  Google Scholar 

  31. Wiechers JW. Avoiding transdermal cosmetic delivery. Cosmet Toil 2000;115:39–46.

    CAS  Google Scholar 

  32. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 2007;127:1701–12.

    PubMed  CAS  Google Scholar 

  33. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J. Nanoparticles: an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 2007;66:159–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, Italy) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Scalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalia, S., Mezzena, M. Incorporation in Lipid Microparticles of the UVA Filter, Butyl Methoxydibenzoylmethane Combined with the UVB Filter, Octocrylene: Effect on Photostability. AAPS PharmSciTech 10, 384–390 (2009). https://doi.org/10.1208/s12249-009-9217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9217-2

Key words

Navigation