Skip to main content

Advertisement

Log in

Chlorhexidine Salt-Loaded Polyurethane Orthodontic Chains: In Vitro Release and Antibacterial Activity Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The widespread use of indwelling medical devices has enormously increased the interest in materials incorporating antibiotics and antimicrobial agents as a means to prevent dangerous device-related infections. Recently, chlorhexidine-loaded polyurethane has been proposed as a material suitable for the production of devices which are able to resist microbial contamination. The aim of the present study was to characterize the in vitro release of chlorhexidine from new polymeric orthodontic chains realized with polyurethane loaded with two different chlorhexidine salts: chlorhexidine diacetate or chlorhexidine digluconate. The orthodontic chains constituted of three layers: a middle polyurethane layer loaded with chlorhexidine salt inserted between two layers of unloaded polymer. In vitro release of chlorhexidine diacetate and digluconate from orthodontic chains loaded with 10% or 20% (w/w) chlorhexidine salt was sustained for 42 days and followed Fickian diffusion. The drug diffusion through the polyurethane was found to be dependent not only on chlorhexidine loading, but also on the type of chlorhexidine salt. The antibacterial activity of 0.2% (w/w) chlorhexidine diacetate-loaded orthodontic chain was successfully tested towards clinically isolated biofilm forming ica-positive Staphylococcus epidermidis via agar diffusion test. In conclusion, the chlorhexidine salt-loaded chains could provide an innovative approach in the prevention of oral infections related to the use of orthodontic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Chauvel-Lebert DJ, Auroy P, Bonnaure-Mallet M. Biocompatibility of elastomers. In: Dumitriu S, editor. Polymeric biomaterials. New-York: Marcel Dekker; 2002. p. 311–60.

    Google Scholar 

  2. Eliades T. Orthodontic materials research and applications: part 2. Current status and projected future developments in materials and biocompatibility. Am J Orthod Dentofac Orthop. 2007;131(2):253–62. doi:10.1016/j.ajodo.2005.12.029.

    Article  Google Scholar 

  3. Renick MR, Brantley WA, Beck FM, Vig KWL, Webb CS. Studies of orthodontic elastomeric modules. Part 1: glass transition temperatures for representative pigmented products in the as-received condition and after orthodontic use. Am J Orthod Dentofac Orthop. 2004;126(3):337–43. doi:10.1016/j.ajodo.2003.07.017.

    Article  Google Scholar 

  4. Opsahl Vital S, Haignere-Rubinstein C, Lasfargues J-J, Chaussain C. Caries risk and orthodontic treatment. Int Orthod. 2010;8(1):28–45. doi:10.1016/j.ortho.2009.12.003.

    PubMed  Google Scholar 

  5. Jones CG. Periodontology 2000. Periodontology. 1997;15(1):55–62. doi:10.1111/j.1600-0757.1997.tb00105.x.

    Article  CAS  Google Scholar 

  6. Reverdy ME. La chlorhexidine. In: Fleurette J, Freney J, Reverdy ME, editors. Antisepsie et désinfection. Paris: ESKA; 1995. p. 135–68.

    Google Scholar 

  7. Becerik S, Turkoglu OYA, Emingil G, Vural C, Özdemir G, Atilla G. Antimicrobial effect of adjunctive use of chlorhexidine mouthrinse in untreated gingivitis: a randomized, placebo-controlled study. APMIS. 2011;119(6):364–72. doi:10.1111/j.1600-0463.2011.02741.x.

    Article  PubMed  CAS  Google Scholar 

  8. Menegon RF, Blau L, Janzantti NS, Pizzolitto AC, Corrêa MA, Monteiro M, et al. A nonstaining and tasteless hydrophobic salt of chlorhexidine. J Pharm Sci. 2011;100(8):3130–8. doi:10.1002/jps.22517.

    Article  PubMed  CAS  Google Scholar 

  9. Stanislawczuk R, Reis A, Loguercio AD. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J Dent. 2011;39(1):40–7. doi:10.1016/j.jdent.2010.10.001.

    Article  PubMed  CAS  Google Scholar 

  10. Verraedt E, Pendela M, Adams E, Hoogmartens J, Martens JA. Controlled release of chlorhexidine from amorphous microporous silica. J Control Release. 2010;142(1):47–52. doi:10.1016/j.jconrel.2009.09.022.

    Article  PubMed  CAS  Google Scholar 

  11. Verraedt E, Braem A, Chaudhari A, Thevissen K, Adams E, Van Mellaert L, et al. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. Int J Pharm. 2011;419(1–2):28–32. doi:10.1016/j.ijpharm.2011.06.053.

    Article  PubMed  CAS  Google Scholar 

  12. Fong N, Simmons A, Poole-Warren LA. Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomater. 2010;6(7):2554–61. doi:10.1016/j.actbio.2010.01.005.

    Article  PubMed  CAS  Google Scholar 

  13. Huynh TTN, Padois K, Sonvico F, Rossi A, Zani F, Pirot F, et al. Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate. Eur J Pharm Biopharm. 2010;74(2):255–64. doi:10.1016/j.ejpb.2009.11.002.

    Article  PubMed  CAS  Google Scholar 

  14. Catalbas B, Ercan E, Dalli M, Gelgor IE, Erdemir A. Does chlorhexidine affect the shear bond strengths of orthodontic brackets? J Dent Sci. 2011;6(2):76–81. doi:10.1016/j.jds.2011.04.002.

    Article  Google Scholar 

  15. Dalli M, Ercan E, Zorba YO, Ince B, Sahbaz C, Bahsi E, et al. Effect of 1% chlorhexidine gel on the bonding strength to dentin. J Dent Sci. 2010;5(1):8–13. doi:10.1016/s1991-7902(10)60002-5.

    Article  Google Scholar 

  16. Eliades T, Eliades G, Watts DC, Brantley WA. Elastomeric ligatures and chains. In: W.A. Brantley, T. Eliades (eds.) Elsevier, New-York 2001

  17. Langlade M. Force élastique de classe 1, Optimisation des élastiques orthodontiques. Maloine ed. Paris 2000.

  18. Lboutounne H, Chaulet J-F, Ploton C, Falson F, Pirot F. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly([ε]-caprolactone) nanocapsule encapsulated form and as a digluconate. J Control Release. 2002;82(2–3):319–34. doi:10.1016/s0168-3659(02)00142-6.

    Article  PubMed  CAS  Google Scholar 

  19. Nerurkar MJ, Zentner GM, Rytting JH. Effect of chloride on the release of chlorhexidine salts from methyl methacrylate: 2-hydroxyethyl methacrylate copolymer reservoir devices. J Control Release. 1995;33(3):357–63. doi:10.1016/0168-3659(94)00104-3.

    Article  CAS  Google Scholar 

  20. Zeng P, Rao A, Wiedmann TS, Bowles W. Solubility properties of chlorhexidine salts. Drug Dev Ind Pharm. 2009;35(2):172–6. doi:doi:10.1080/03639040802220318.

    Article  PubMed  CAS  Google Scholar 

  21. Zeng P, Zhang G, Rao A, Bowles W, Wiedmann TS. Concentration dependent aggregation properties of chlorhexidine salts. Int J Pharm. 2009;367(1–2):73–8. doi:10.1016/j.ijpharm.2008.09.031.

    Article  PubMed  CAS  Google Scholar 

  22. Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev. 2001;48(2–3):229–47. doi:10.1016/s0169-409x(01)00116-8.

    Article  PubMed  CAS  Google Scholar 

  23. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2–3):139–57. doi:10.1016/s0169-409x(01)00112-0.

    Article  PubMed  CAS  Google Scholar 

  24. Hiraishi N, Yiu CKY, King NM, Tay FR, Pashley DH. Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins. Dent Mater. 2008;24(10):1391–9. doi:10.1016/j.dental.2008.03.011.

    Article  PubMed  CAS  Google Scholar 

  25. Martinelli A, D’Ilario L, Francolini I, Piozzi A. Water state effect on drug release from an antibiotic loaded polyurethane matrix containing albumin nanoparticles. Int J Pharm. 2011;407(1–2):197–206. doi:10.1016/j.ijpharm.2011.01.029.

    Article  PubMed  CAS  Google Scholar 

  26. Schneider NS, Illinger JL, Karasz FE. Effect of water on the glass transition temperature of hydrophilic polyurethanes. J Appl Polym Sci. 1993;48(10):1723–9. doi:10.1002/app.1993.070481005.

    Article  CAS  Google Scholar 

  27. Farkas E, Zelkó R, Török G, Rácz I, Marton S. Influence of chlorhexidine species on the liquid crystalline structure of vehicle. Int J Pharm. 2001;213(1–2):1–5. doi:10.1016/s0378-5173(00)00575-5.

    Article  PubMed  CAS  Google Scholar 

  28. Cafiso V, Bertuccio T, Santagati M, Campanile F, Amicosante G, Perilli MG, et al. Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. Clin Microbiol Infect. 2004;10(12):1081–8. doi:10.1111/j.1469-0691.2004.01024.x.

    Article  PubMed  CAS  Google Scholar 

  29. Kalaga A, Addy M, Hunter B. Comparison of chlorhexidine delivery by mouthwash and spray on plaque accumulation. J Periodontol. 1989;60:127–30.

    Article  PubMed  CAS  Google Scholar 

  30. Jenkins S, Addy M, Newcombe RG. Dose response of chlorhexidine against plaque and comparison with triclosan. J Clin Periodontol. 1994;21:250–5.

    Article  PubMed  CAS  Google Scholar 

  31. McKenney D, Hübner J, Muller E, Wang Y, Goldmann DA, Pier GB. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun. 1998;66(10):4711–20.

    PubMed  CAS  Google Scholar 

  32. von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Padois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padois, K., Bertholle, V., Pirot, F. et al. Chlorhexidine Salt-Loaded Polyurethane Orthodontic Chains: In Vitro Release and Antibacterial Activity Studies. AAPS PharmSciTech 13, 1446–1450 (2012). https://doi.org/10.1208/s12249-012-9872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9872-6

KEY WORDS

Navigation