Skip to main content
Log in

Sucrose Stearate-Enriched Lipid Matrix Tablets of Etodolac: Modulation of Drug Release, Diffusional Modeling and Structure Elucidation Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Etodolac is a non-steroidal anti-inflammatory drug having an elimination half-life of 7 h; oral doses are given every 6–8 h. The aim of current work was the development of controlled-release etodolac lipid matrix tablets. The variables influencing design of these tablets (L1–L28) by the hot fusion method were investigated including; (1) lipid type (stearic acid, cetyl alcohol, cetostearyl alcohol, Imwitor® 900K, Precirol® ATO 5 and Compritol® ATO 888), (2) drug/lipid ratio (1:0.25 and 1:0.50, respectively), (3) filler type (lactose, Avicel® PH101 and their physical mixtures; 2:1, 1:1, and 1:2, respectively), (4) surfactant’s HLB (5 and 11), and (5) drug/surfactant ratio (20:1 and 10:1, respectively). Statistical analysis and kinetic modeling of drug release data were evaluated. The inner matrix of the tablet was visualized via scanning electron microscopy (SEM). An inverse correlation was observed between the drug/lipid ratio and the drug release rate. Precirol®- and Compritol®-containing formulae showed more retarded drug release rates. Lactose/Avicel® physical mixture (1:1) was considered as a filler of choice where it minimized the burst effect observed with Avicel®-free formulae. The higher surfactant’s HLB, the higher drug release rate. The similarity factor (f 2) between the drug release profiles revealed similarity within the investigated drug/surfactant ratios. Sucrose stearate D1805®-based matrix (L21) succeeded in delivering more than 90% of etodolac over 12 h, following anomalous (non-Fickian) controlled-release kinetics. SEM micrographs confirmed pore formation, within the latter matrix, upon contact with dissolution medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Noack A, Hause G, Mäder K. Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int J Pharm. 2012;423(2):440–51.

    Article  CAS  PubMed  Google Scholar 

  2. Güres S, Siepmann F, Siepmann J, Kleinebudde P. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments. Eur J Pharm Biopharm. 2012;80(1):122–9.

    Article  PubMed  Google Scholar 

  3. Zhou L, Chen Y, Zhang Z, He J, Du M, Wu Q. Preparation of tripterine nanostructured lipid carriers and their absorption in rat intestine. Pharmazie. 2012;67(4):304–10.

    CAS  PubMed  Google Scholar 

  4. Zeng N, Hu Q, Liu Z, Gao X, Hu R, Song Q, et al. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int J Pharm. 2012;424(1–2):58–66.

    Article  CAS  PubMed  Google Scholar 

  5. Pivette P, Faivre V, Mancini L, Gueutin C, Daste G, Ollivon M, et al. Controlled release of a highly hydrophilic API from lipid microspheres obtained by prilling: analysis of drug and water diffusion processes with X-ray-based methods. J Control Release. 2012;158(3):393–402.

    Article  CAS  PubMed  Google Scholar 

  6. Hasa D, Perissutti B, Grassi M, Zacchigna M, Pagotto M, Lenaz D, et al. Melt extruded helical waxy matrices as a new sustained drug delivery system. Eur J Pharm Biopharm. 2011;79(3):592–600.

    Article  CAS  PubMed  Google Scholar 

  7. Ozyazici M, Gökce EH, Ertan G. Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm. 2006;63:331–9.

    Article  PubMed  Google Scholar 

  8. Huang HP, Mehta SC, Radebaugh GW, Fawzi MB. Mechanism of drug release from an acrylic polymer–wax matrix tablet. J Pharm Sci. 1994;83(6):795–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sato H. Dissolution mechanism of diclofenac sodium from wax matrix granules. Ibid. 1997;86(8):929–34.

    CAS  Google Scholar 

  10. Obaidat AA, Obaidat RM. Controlled release of tramadol hydrochloride from matrices prepared using glyceryl behenate. Eur J Pharm Biopharm. 2001;52(2):231–5.

    Article  CAS  PubMed  Google Scholar 

  11. Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. London: Pharmaceutical Press and American Pharmacists Association; 2006. Electronic version.

    Google Scholar 

  12. Abdelbary GA, Tadros MI. Design and in vitro/in vivo evaluation of novel nicorandil extended release matrix tablets based on hydrophilic interpolymer complexes and a hydrophobic waxy polymer. Eur J Pharm Biopharm. 2008;69:1019–28.

    Article  CAS  PubMed  Google Scholar 

  13. Thomsen LJ, Schaefer T, Sonnergaard JM, Kristensen HG. Prolonged release matrix pellets prepared by melt pelletization. I. Process variables. Drug Dev Ind Pharm. 1993;19:1867–87.

    Article  CAS  Google Scholar 

  14. Adeyeye CM, Price J. Development and evaluation of sustained-release ibuprofen–wax microspheres. II. In vitro dissolution studies. Pharm Res. 1994;11:575–9.

    Article  CAS  PubMed  Google Scholar 

  15. Peri D, Bogdansky S, Allababidi S, Shah JC. Development of an implantable, biodegradable, controlled drug delivery system for local antibiotic therapy. Drug Dev Ind Pharm. 1994;20:1341–52.

    Article  CAS  Google Scholar 

  16. Barthelemy P, Laforêt JP, Farah N, Joachim J. Compritol 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations. Eur J Pharm Biopharm. 1999;47(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  17. Li FQ, Hu JH, Deng JX, Su H, Xu S, Liu JY. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm. 2006;324:152–7.

    Article  CAS  PubMed  Google Scholar 

  18. Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces. 2011;88(1):483–9.

    Article  CAS  PubMed  Google Scholar 

  19. Corti G, Cirri M, Maestrelli F, Mennini N, Mura P. Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-beta-cyclodextrin. Eur J Pharm Biopharm. 2008;68(2):303–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hamdani J, Moës AJ, Amighi K. Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int J Pharm. 2002;245(1–2):167–77.

    Article  CAS  PubMed  Google Scholar 

  21. Abd-Elbary A, El-laithy HM, Tadros MI. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Ibid. 2008;357:189–98.

    CAS  Google Scholar 

  22. Youan BC, Hussain A, Nguyen NT. Evaluation of sucrose esters as alternative surfactants in micro-encapsulation of proteins by the solvent evaporation method. AAPS PharmSciTech. 2003;5(2):E22.

    Google Scholar 

  23. Sweetman SC. Martindale: the complete drug reference. 37th ed. London: Pharmaceutical Press; 2011. Electronic version.

    Google Scholar 

  24. Abd-Elbary A, Tadros MI, Alaa-Eldin AA. Development and in vitro/in vivo evaluation of etodolac controlled porosity osmotic pump tablets. AAPS PharmSciTech. 2011;12(2):485–95.

    Article  CAS  PubMed  Google Scholar 

  25. Kasongo KW, Pardeike J, Müller RH, Walker RB. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Pharm Sci. 2011;100(12):5185–96.

    Article  CAS  PubMed  Google Scholar 

  26. British Pharmacopoeia. British Pharmacopoeia Commission, HMSO, London; 2011. Electronic version.

  27. Moore J, Flanner H. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  28. Korsmeyer RW, Gurny R, Docler E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  29. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropylmethylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.

    Article  CAS  PubMed  Google Scholar 

  30. Quadir MA, Rahman MS, Karim MZ, Akter S, Awkat MT, Reza MS. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery. Pak J Pharm Sci. 2003;16(2):17–28.

    CAS  PubMed  Google Scholar 

  31. Martin A. Physical pharmacy and pharmaceutical sciences. 5th ed. Maryland: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  32. Lee BJ, Ryu SG, Cui JH. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm. 1999;25(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  33. Sudha BS, Sridhar BK, Srinatha A. Modulation of tramadol release from a hydrophobic matrix: implications of formulations and processing variables. AAPS PharmSciTech. 2010;11(1):433–40.

    Article  CAS  PubMed  Google Scholar 

  34. Seitavuopio P, Rantanen J, Yliruusi J. Tablet surface characterisation by various imaging techniques. Int J Pharm. 2003;254(2):281–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Declaration of Interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ibrahim Tadros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd-Elbary, A., Tadros, M.I. & Alaa-Eldin, A.A. Sucrose Stearate-Enriched Lipid Matrix Tablets of Etodolac: Modulation of Drug Release, Diffusional Modeling and Structure Elucidation Studies. AAPS PharmSciTech 14, 656–668 (2013). https://doi.org/10.1208/s12249-013-9951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9951-3

Key words

Navigation