Skip to main content

Advertisement

Log in

An Explanation for the Difference in the Percutaneous Penetration Behavior of Tamsulosin Induced by Two Different O-Acylmenthol Derivatives

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Using tamsulosin (TAL) as a model drug, the aim of this study was to investigate and compare the percutaneous permeation behavior of two menthol derivatives, 2-isopropyl-5-methylcyclohexyl heptanoate (M-HEP) and 2-isopropyl-5-methylcyclohexyl decanoate (M-DEC). In vitro transdermal permeation study was carried out using porcine skin. The residual amount of enhancers in the skin after permeation experiment was determined by gas chromatographic (GC) method. The penetration depths of fluorescein were visualized by two-photon confocal laser scanning microscopy (2P-LSM) after the skin being treated with different enhancers. Furthermore, changes in the stretching frequency of functional group of ceramide were investigated by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) technique. After M-HEP addition, the cumulative amount of TAL permeated in 8 h (Q 8) reached 20.57 ± 0.54 μg/cm2 and the depth of fluorescein was 40 μm; the CH2 of ceramide symmetric stretching frequency was 4 cm−1 blue shifted. However, M-DEC has an opposite effect on TAL permeation compared with that of M-HEP. TAL is a crucial factor affecting permeation procedure, and microenvironment of lipid region determines promotion capability of the enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao L, Li Y, Fang L, Ren C, Xu Y, He Z. Effect of O-acylmenthol and salt formation on the skin permeation of diclofenac acid. Drug Dev Ind Pharm. 2009;35:814–26.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao L, Fang L, Xu Y, Zhao Y, He Z. Effect of O-acylmenthol on transdermal delivery of drugs with different lipophilicity. Int J Pharm. 2008;352:92–103.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao L, Fang L, Xu Y, Liu S, He Z, Zhao Y. Transdermal delivery of penetrants with differing lipophilicities using O-acylmenthol derivatives as penetration enhancers. Eur J Pharm Biopharm. 2008;69:199–213.

    Article  CAS  PubMed  Google Scholar 

  4. Yu B, Kim KH, So PT, Blankschtein D, Langer R. Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J Invest Dermatol. 2003;120:448–55.

    Article  CAS  PubMed  Google Scholar 

  5. Yu B, Dong CY, So PT, Blankschtein D, Langer R. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol. 2001;117:16–25.

    Article  CAS  PubMed  Google Scholar 

  6. Obata Y, Maruyama Y, Takavama K. The mode of promoting activity of O-ethylmenthol as a transdermal absorption enhancer. Pharm Res. 2006;23:392–400.

    Article  CAS  PubMed  Google Scholar 

  7. Narishetty ST, Panchagnula R. Effect of l-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J Control Release. 2005;102:59–70.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Sakano H, Yoshida M, Numata N, Mizuno N. Characterization of the influence of polyol fatty acid esters on the permeation of diclofenac through rat skin. J Control Release. 2001;73:351–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ibrahim SA, Li SK. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int J Pharm. 2010;383:89–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fang L, Kobayashi Y, Numajiri S, Kobayashi D, Sugibayashi K, Morimoto Y. The enhancing effect of a triethanolamine-ethanol-isopropyl myristate mixed system on the skin permeation of acidic drugs. Biol Pharm Bull. 2002;25:1339–44. 17.

    Article  CAS  PubMed  Google Scholar 

  11. Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical solid dosage form design. Int J Pharm. 1997;148:1–21.

    Article  CAS  Google Scholar 

  12. Seto JE, Polat BE, VanVeller B, Lopez RF, Langer R, Blankschtein D. Fluorescent penetration enhancers for transdermal applications. J Control Release. 2012;158:85–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Krevelen V, Krevelen DW. Properties of Polymers. Amsterdam: Elsevier; 1990.

    Google Scholar 

  14. Dias M, Hadgraft J, Lane ME. Influence of membrane–solvent–solute interactions on solute permeation in skin. Int J Pharm. 2007;340:65–70.

    Article  CAS  PubMed  Google Scholar 

  15. Kuo TR, Wu CL, Hsu CT, Lo W, Chiang SJ, Lin SJ, Dong CY, Chen CC. Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials. 2009;30:3002–8.

    Article  CAS  PubMed  Google Scholar 

  16. Uitto OD, White HS. Electroosmotic pore transport in human skin. Pharm Res. 2003;20:646–52.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Román R, Naik A, Kalia YN, Fessi H, Guy RH. Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm. 2004;58:301–16.

    Article  PubMed  Google Scholar 

  18. Warner KS, Li SK, He N, Suhonen TM, Chantasart D, Bolikal D, Higuchi WI. Structure–activity relationship for chemical skin permeation enhancers: probing the chemical microenvironment of the site of action. J Pharm Sci. 2003;92:1305–22.

    Article  CAS  PubMed  Google Scholar 

  19. Warner KS, Li SK, Higuchi WI. Influences of alkyl group chain length and polar head group on chemical skin permeation enhancement. J Pharm Sci. 2001;90:1143–53.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang CF, Yang ZL, Luo JB. Effects of cinnamene enhancers on transdermal delivery of ligustrazine hydrochloride. Eur J Pharm Biopharm. 2007;67:413–9.

    Article  CAS  PubMed  Google Scholar 

  21. Vaddi HK, Ho PC, Chan SY. Terpenes in propylene glycol as skin-penetration enhancers: permeation and partition of haloperidol, Fourier transform infrared spectroscopy, and differential scanning calorimetry. J Pharm Sci. 2002;91:1639–51.

    Article  CAS  PubMed  Google Scholar 

  22. Janůšová B, Zbytovská J, Lorenc P, Vavrysová H, Palát K, Hrabálek A, Vávrová K. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta. 2011;1811:129–37.

    Article  PubMed  Google Scholar 

  23. He W, Guo X, Zhang M. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int J Pharm. 2008;356(1–2):82–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The program was supported by sub-subject of “new drug creating” of the Mega-Projects for Science Research for the “Eleventh Five-Year Plan” (No. 2009ZX09301-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, L., Cun, D., Xi, H. et al. An Explanation for the Difference in the Percutaneous Penetration Behavior of Tamsulosin Induced by Two Different O-Acylmenthol Derivatives. AAPS PharmSciTech 15, 803–809 (2014). https://doi.org/10.1208/s12249-014-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0105-z

Key words

Navigation