Skip to main content

Advertisement

Log in

Characterization and Comparison of Lidocaine-Tetracaine and Lidocaine-Camphor Eutectic Mixtures Based on Their Crystallization and Hydrogen-Bonding Abilities

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Avula SG, Alexander K, Riga A. Predicting eutectic behavior of drugs and excipients by unique calculations. J Therm Anal Calorim. 2010;99:655–8.

    Article  CAS  Google Scholar 

  2. Stott PW, Williams AC, Barry BW. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release. 1998;50:297–308.

    Article  CAS  PubMed  Google Scholar 

  3. Bi M, Sung-Joo H, Kenneth RM. Mechanism of eutectic formation upon compaction and its effects on tablet properties. Thermochim Acta. 2003;404:213–26.

    Article  CAS  Google Scholar 

  4. Ehrenstrom-Reiz GME, Reiz SLA. EMLA—a eutectic mixture of local anaesthetics for topical anaesthesia. Acta Anaesthesiol Scand. 1982;26:596–8.

    Article  CAS  PubMed  Google Scholar 

  5. Keiji S, Noboru O. Studies on absorption of eutectic mixture I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9:866–72.

    Article  Google Scholar 

  6. Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: experimental evaluation of a eutectic mixture: urea-acetaminophen system. J Pharm Sci. 1966;55:482–7.

    Article  CAS  Google Scholar 

  7. Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic-based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235:247–65.

    Article  CAS  PubMed  Google Scholar 

  8. Gala U, Pham H, Chauhan H. Pharmaceutical applications of eutectic mixtures. J Dev Drug. 2013;2:1–2.

    Google Scholar 

  9. Tainmont J. Dr Bonain, an ENT surgeon with an ocean background. B-ENT. 2007;3:217–30.

    CAS  PubMed  Google Scholar 

  10. Jyvakorpi M. A comparison of topical Emla cream with Bonain’s solution for anesthesia of the tympanic membrane during tympanocentesis. Eur Arch Otorhinolaryngol. 1996;253:234–6.

    Article  CAS  PubMed  Google Scholar 

  11. Brodin A, Nyqvist-Mayer A, Wadsten T, Forslund B, Broberg F. Phase diagram and aqueous solubility of the lidocaine-prilocaine binary system. J Pharm Sci. 1984;73:481–4.

    Article  CAS  PubMed  Google Scholar 

  12. Berndt B, Hans E. Local anesthetic mixture for topical application, and process for its preparation, as well as method for obtaining local anesthesia. US 4562060 (1985).

  13. Nyqvist-Mayer A, Brodin F, Frank G. Phase distribution studies on an oil–water emulsion based on a eutectic mixture of lidocaine and prilocaine as the dispersed phase. J Pharm Sci. 1985;74:1192–5.

    Article  CAS  PubMed  Google Scholar 

  14. Luotonen J, Laitakari K, Karjalainen H, Jokinen K. EMLA in local anaesthesia of the tympanic membrane. Acta Otolaryngol. 1992;492:63–7.

    Article  CAS  Google Scholar 

  15. Hahn IH, Hoffman RS, Nelson LS. EMLA-induced methemoglobinemia and systemic topical anesthetic toxicity. J Emerg Med. 2004;26:85–8.

    Article  PubMed  Google Scholar 

  16. Vasters FG, Eberhart LH, Koch T, Kranke P, Wulf H, Morin AM. Risk factors for prilocaine-induced methaemoglobinaemia following peripheral regional anaesthesia. Eur J Anaesthesiol. 2006;23:760–5.

    Article  CAS  PubMed  Google Scholar 

  17. Boran P, Tokuc G, Yegin Z. Methemoglobinemia due to application of prilocaine during circumcision and the effect of ascorbic acid. J Pediatr Urol. 2008;4:475–6.

    Article  PubMed  Google Scholar 

  18. Jun HW, Kang L. Enhanced transdermal anesthesia of local anesthetic agents. WO2000069471 A1 (2001).

  19. The PubChem Structure Search Database. http://pubchem.ncbi.nlm.nih.gov/search/search.cgi Accessed 13 August 2014.

  20. Kang L, Jun HW, Mani N. Preparation and characterization of two phase melt systems of lidocaine. Int J Pharm. 2001;222:35–44.

    Article  CAS  PubMed  Google Scholar 

  21. Woolfson AD, McCafferty DF, Moss GP. Development and characterisation of a moisture-activated bioadhesive drug delivery system for percutaneous local anaesthesia. Int J Pharm. 1998;169:83–94.

    Article  CAS  Google Scholar 

  22. Teng J, Liu S. Re-determination of succinonitrile (SCN)–camphor phase diagram. J Cryst Growth. 2006;290:248–57.

    Article  CAS  Google Scholar 

  23. Alster T. A lidocaine 7% and tetracaine 7% peel for induction of local dermal anesthesia for nonablative facial laser resurfacing. J Am Acad Dermatol. 2005;52:44.

    Google Scholar 

  24. Goldberg L. A lidocaine 7% and tetracaine 7% peel for local dermal anesthesia before cryotherapy treatment for actinic keratosis. J Am Acad Dermatol. 2005;52:44.

    Article  Google Scholar 

  25. Fitzpatrick R. A lidocaine 7% and tetracaine 7% peel before pulsed dye laser therapy to treat facial lesions in adults. J Am Acad Dermatol. 2005;52:44.

    Google Scholar 

  26. Corvis Y, Espeau P. Incidence of chirality on the properties of mixtures containing an amide type anesthetic compound. Thermochim Acta. 2012;539:39–43.

    Article  CAS  Google Scholar 

  27. Giron D. Applications of thermal analysis in the pharmaceutical industry. J Pharm Biomed Anal. 1986;4:755–70.

    Article  CAS  PubMed  Google Scholar 

  28. Coleman J, Craig DQM. Modulated temperature differential scanning calorimetry: a novel approach to thermal analysis. Int J Pharm. 1996;135:13–29.

    Article  CAS  Google Scholar 

  29. Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals—part 1. Pharm Sci Technol Today. 1998;1:191–9.

    Article  CAS  Google Scholar 

  30. Kemp RB. Handbook of thermal analysis and calorimetry: from macromolecules to man. Amsterdam: Elsevier Science; 1999.

    Google Scholar 

  31. Giron D. Thermal analysis, microcalorimetry and combined techniques for study of pharmaceuticals. J Pharm Thermal Anal Calorim. 1999;56:1289–304.

    Google Scholar 

  32. Clavaguera N, Saurinab J, Lheritierc J, Massec J, Chauvetc A, Clavaguera-Morad MT. Eutectic mixtures for pharmaceutical applications: a thermodynamic and kinetic study. Thermochim Acta. 1997;290:173–80.

    Article  CAS  Google Scholar 

  33. Clas SD, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. Pharm Sci Technol Today. 1999;2:311–20.

    Article  CAS  PubMed  Google Scholar 

  34. Ratkje SK, Rytter E. Raman spectra of molten mixtures containing aluminum fluoride. I. Lithium fluoride-trilithium hexafluoroaluminate eutectic mixture. J Phys Chem. 1974;78:1499–502.

    Article  CAS  Google Scholar 

  35. Sunol JJ, Berlanga R, Clavaguera-Morad MT, Clavaguera N. Modeling crystallization processes: transformation diagrams. Acta Mater. 2002;50:4783–90.

    Article  CAS  Google Scholar 

  36. Ma Y, Gill HS. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. Pharm Drug Del Pharm Technol. 2014. doi:10.1002/jps.24159.

    Google Scholar 

  37. Shamsudin MS, Asli NA, Abdullah S, Yahya SYS, Rusop M. Effect of synthesis temperature on the growth iron-filled carbon nanotubes as evidenced by structural, micro-Raman, and thermogravimetric analyses. Adv Condens Matter Phys. 2012. doi:10.1155/2012/420619.

    Google Scholar 

  38. Kang L, Jun HW. Formulation and efficacy studies of new topical anesthetic creams. Drug Dev Ind Pharm. 2003;29:505–12.

    Article  CAS  PubMed  Google Scholar 

  39. Giron D, Draghi M, Goldbronn C, Pfeffer S, Piechon P. Study of the polymorphic behavior of some local anesthetic drugs. J Therm Anal. 1997;49:913–27.

    Article  CAS  Google Scholar 

  40. Woolfson AD, McCafferty DF. Percutaneous local anaesthesia: drug release characteristics of the amethocaine phase-change system. Int J Pharm. 1993;94:75–80.

    Article  CAS  Google Scholar 

  41. Dennis AC, McGarvey JJ, Woolfson AD, McCafferty DF, Moss GP. A Raman spectroscopic investigation of bioadhesive tetracaine local anaesthetic formulations. Int J Pharm. 2004;279:43–50.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt AC. The role of molecular structure in the crystal polymorphism of local anesthetic drugs: crystal polymorphism of local anesthetic drugs, part X. Pharm Res. 2005;22:2121–33.

    Article  CAS  PubMed  Google Scholar 

  43. Riga AT, Oberoi LM, Alexander KS. Calorimetry as a preformulation tool for studying eutectics relevant in pharmaceuticals. Am Pharm Rev. 2004;7:18–23.

    CAS  Google Scholar 

  44. Vepuri SB, Anbazhagan S, Divya D, Padmini D. A review on supramolecular chemistry in drug design and formulation research. Indones J Pharm. 2013;24:131–50.

    Google Scholar 

  45. Kam NWS. Analysis of drug samples using Raman micro-spectroscopy. Physical Sciences & Mathematics. 2001;5. http://legacy.jyi.org/volumes/volume5/issue1/articles/kam.html. Accessed 12 June 2014.

  46. Daferera DJ, Tarantilis PA, Polissiou MG. Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. J Agric Food Chem. 2002;50:5503–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gala, U., Chuong, M.C., Varanasi, R. et al. Characterization and Comparison of Lidocaine-Tetracaine and Lidocaine-Camphor Eutectic Mixtures Based on Their Crystallization and Hydrogen-Bonding Abilities. AAPS PharmSciTech 16, 528–536 (2015). https://doi.org/10.1208/s12249-014-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0242-4

KEY WORDS

Navigation