Skip to main content

Advertisement

Log in

Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A great attention is presently paid to the design of drug delivery vehicles based on surface-modified magnetic nanoparticles. They can, in principle, be directed to a desired target area for releasing their drug payload, a process triggered by pH, temperature, radiation, or even magnetic field. To this, the possibility of forming part of diagnostic tools by enhanced magnetic resonance imaging or that of further treatment by magnetic hyperthermia can be added. Bare particles are rapidly eliminated from the bloodstream by the phagocyte mononuclear system, leading to short biological half-life. It is hence required to coat them in order to increase their biocompatibility and facilitate the drug incorporation. In this work, magnetite nanoparticles were coated with poly(butylcyanoacrylate) (PBCA) manufactured and characterized with regard to their physical properties and their suitability as a platform for magnetically controlled drug delivery. The average diameter of magnetite and core–shell nanoparticles was 97 ± 19 and 140 ± 20 nm, respectively. Infrared analysis, electrophoretic mobility, surface thermodynamics analysis, and X-ray diffraction all confirmed that the magnetic particles were sufficiently covered by the polymer in the composite nanoparticles. In addition, assays using normal (CCD-18 and MCF-10A) and tumoral (T-84 and MCF-7) cell lines derived from colon and breast tissue, respectively, demonstrated that nanocomposites have low or negligible cytotoxicity. It is concluded that PBCA-coated magnetite core–shell nanoparticles represent a remarkable promise as a platform for magnetically controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107.

    Article  CAS  PubMed  Google Scholar 

  2. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–78.

    Article  CAS  PubMed  Google Scholar 

  3. Yan K, Li PH, Zhu HE, Zhou YJ, Ding JD, Shen J, et al. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment. RSC Adv. 2013;3(27):10598–618.

    Article  CAS  Google Scholar 

  4. Guo J, Yang W, Wang C. Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater. 2013;25(37):5196–214.

    Article  CAS  PubMed  Google Scholar 

  5. Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19(4):474–81.

    Article  CAS  PubMed  Google Scholar 

  6. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci. 2014:1–28.

  7. El-Hammadi MM, Arias JL. Iron oxide-based multifunctional nanoparticulate systems for biomedical applications: a patent review (2008-present). Expert Opin Ther Pat. 2015;25(6):691–709.

    Article  CAS  PubMed  Google Scholar 

  8. Behrens S, Appel I. Magnetic nanocomposites. Curr Opin Biotechnol. 2016;39:89–96.

    Article  CAS  PubMed  Google Scholar 

  9. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sadighian S, Rostamizadeh K, Hosseini-Monfared H, Hamidi M. Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf B Biointerfaces. 2014;117:406–13.

    Article  CAS  PubMed  Google Scholar 

  11. Hilger I. In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperth. 2013;29(8):828–34.

    Article  Google Scholar 

  12. Dobson J. Magnetic nanoparticles for drug delivery. Drug Develop Res. 2006;67(1):55–60.

    Article  CAS  Google Scholar 

  13. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32.

    Article  Google Scholar 

  14. Arias JL, Reddy LH, Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem. 2012;22(15):7622–32.

    Article  CAS  Google Scholar 

  15. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res. 2012;14(11):1–13.

    Article  Google Scholar 

  16. Hong RY, Feng B, Chen LL, Liu GH, Li HZ, Zheng Y, et al. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J. 2008;42(3):290–300.

    Article  CAS  Google Scholar 

  17. Ruiz A, Salas G, Calero M, Hernández Y, Villanueva A, Herranz F, et al. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomater. 2013;9(5):6421–30.

    Article  CAS  PubMed  Google Scholar 

  18. Peça IN, Bicho A, Gardner R, Cardoso MM. Control of doxorubicin release from magnetic poly(dl-lactide-co-glycolide) nanoparticles by application of a non-permanent magnetic field. J Nanopart Res. 2015;17(11):1–11.

    Article  Google Scholar 

  19. Gao F, Yan Z, Zhou J, Cai Y, Tang J. Methotrexate-conjugated magnetic nanoparticles for thermochemotherapy and magnetic resonance imaging of tumor. J Nanopart Res. 2012;14(10):1–10.

    Google Scholar 

  20. Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2013;65(5):732–43.

    Article  CAS  PubMed  Google Scholar 

  21. Nishio K, Ikeda M, Gokon N, Tsubouchi S, Narimatsu H, Mochizuki Y, et al. Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. J Magn Magn Mater. 2007;310:2408–10.

    Article  CAS  Google Scholar 

  22. Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington). 2011;14(7–8):330–8.

    Article  CAS  Google Scholar 

  23. Martínez Vera NP, Schmidt R, Langer K, Zlatev I, Wronski R, Auer E, et al. Tracking of magnetite labeled nanoparticles in the rat brain using MRI. PLoS One. 2014;9(3):e92068.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sebastianelli A, Sen T, Bruce IJ. Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Lett Appl Microbiol. 2008;46(4):488–91.

    Article  CAS  PubMed  Google Scholar 

  25. Ma C, Li C, He N, Wang F, Ma N, Zhang L, et al. Preparation and characterization of monodisperse core-shell Fe3O4@SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21. J Biomed Nanotechnol. 2012;8(6):1000–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kempe H, Kempe M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010;31(36):9499–510.

    Article  CAS  PubMed  Google Scholar 

  27. Ding W, Guo L. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomedicine. 2013;8:4631–9.

    PubMed  PubMed Central  Google Scholar 

  28. Zamora-Mora V, Fernandez-Gutierrez M, San Roman J, Goya G, Hernandez R, Mijangos C. Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym. 2014;102:691–8.

    Article  CAS  PubMed  Google Scholar 

  29. Jaiswal MK, Pradhan A, Banerjee R, Bahadur D. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J Nanosci Nanotechnol. 2014;14(6):4082–9.

    Article  CAS  PubMed  Google Scholar 

  30. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Banerjee SS, Chen DH. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater. 2007;19:6345–9.

    Article  CAS  Google Scholar 

  32. Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT. In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine. 2010;6(5):672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khiabani SS, Farshbaf M, Akbarzadeh A, Davaran S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol. 2017;45:6–17.

    Article  Google Scholar 

  34. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31(18):4995–5006.

    Article  CAS  PubMed  Google Scholar 

  35. Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget. 2015;6(11):8788–806.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Amiel GE, Sukhotnik I, Kawar B, Siplovich L. Use of N-butyl-2-cyanoacrylate in elective surgical incisions—longterm outcomes. J Am Coll Surg. 1999;189(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  37. Simeonova M, Ivanova G, Enchev V, Markova N, Kamburov M, Petkov C, et al. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles. Acta Biomater. 2009;5(6):2109–21.

    Article  CAS  PubMed  Google Scholar 

  38. Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G. Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res. 2011;28(4):897–906.

    Article  CAS  PubMed  Google Scholar 

  39. Simeonova M, Rangel M, Ivanova G. NMR study of the supramolecular structure of dual drug-loaded poly(butylcyanoacrylate) nanoparticles. Phys Chem Chem Phys. 2013;15(39):16657–64.

    Article  CAS  PubMed  Google Scholar 

  40. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17(2):1247–8.

    Article  Google Scholar 

  41. van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev. 1988;88(6):927–41. doi:10.1021/cr00088a006.

    Article  Google Scholar 

  42. van Oss CJ. Interfacial forces in aqueous media. Second ed. New York: Marcel Dekker Inc.; 2006.

    Google Scholar 

  43. Adamson AW. Physical chemistry of surfaces. Eifth ed. New York: Wiley; 1990.

    Google Scholar 

  44. Qu JB, Shao HH, Jing GL, Huang F. PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces. 2013;102:37–44.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials. 2005;26(13):1565–73.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces. 2009;68(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  47. Yao A, Ai F, Wang D, Huang W, Zhang X. Synthesis, characterization and in vitro cytotoxicity of self-regulating magnetic implant material for hyperthermia application. MAT SCI ENG C-BIO S. 2009;29(8):2525–9.

    Article  CAS  Google Scholar 

  48. Arias JL, Gallardo V, Gomez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release. 2001;77(3):309–21.

    Article  CAS  PubMed  Google Scholar 

  49. Arias JL, Gallardo V, Linares-Molinero F, Delgado AV. Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles. J Colloid Interface Sci. 2006;299(2):599–607.

    Article  CAS  PubMed  Google Scholar 

  50. Shahmabadi HE, Bagherpour Doun SK, Alavi SE, Mortazavi M, Saffari Z, Farahnak M, Akbarzadeh A. An investigation into the parameters affecting preparation of polybuyyl cyanoacrylate nanoparticles by emulsion polymerization. Ind J Clin Biochem. 2014;29:357–61.

    Article  CAS  Google Scholar 

  51. Bagad M, Khan ZA. Poly(n-butylcyanoacrylate) nanoaprticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine. 2015;10:3921–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arias JL, Ruiz MA, Lopez-Viota M, Delgado AV. Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study. Colloid Surf B Biointerf. 2007;52:64–70.

    Google Scholar 

  53. Arias JL, Lopez-Viota M, Ruiz MA, Lopez-Viota J, Delgado AV. Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. Int J Pharm. 2007;339(1–2):237–45.

    Article  CAS  PubMed  Google Scholar 

  54. Arias JL, Reddy LH, Couvreur P. Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine. J Drug Target. 2009;17:586–98.

    Article  CAS  PubMed  Google Scholar 

  55. Arias JL, Gallardo V, Gómez-Lopera SA, Delgado AV. Loading of 5-fluorouracil to poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Biomed Nanotechnol. 2005;1(2):214–23.

    Article  CAS  Google Scholar 

  56. Arias JL, Gallardo V, Ruiz MA, Delgado AV. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm. 2007;69:54–63.

    Article  PubMed  Google Scholar 

  57. Arias JL, Gallardo V, Ruiz MA, Delgado AV. Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. Int J Pharm. 2006;337:282–90.

    Article  PubMed  Google Scholar 

  58. Arias JL. Properties of magnetic colloids to be tailored for drug delivery. In: Arias JL, editor. Drug targeting by magnetically responsive colloids. Hauppauge: Nova Science; 2010. p. 41–55.

    Google Scholar 

  59. Kemp SJ, Ferguson RM, Khandhar AP, Krishnan KM. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 2016;6:77452–64.

    Article  CAS  Google Scholar 

  60. Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles. J Magn Magn Mater. 2016;402:34–43.

    Article  CAS  Google Scholar 

  61. Xu HL, Mao KL, Huang YP, Yang JJ, Xu J, Chen PP, Fan ZL, Zou S, Gao ZZ, Yin JY, Xiao J, Lu CT, Zhang BL, Zhao YZ. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale. 2016;8:14222–36.

    Article  CAS  PubMed  Google Scholar 

  62. Wang XQ, Wang L, Tan XR, Zhang HR, Sun GB. Construction of doxorubicin-loading magnetic nanocarriers for assaying apoptosis of glioblastoma cells. J Colloid Interf Sci. 2014;436:267–75.

    Article  CAS  Google Scholar 

  63. Huang L, Tao KX, Liu J, Qi C, Xu LM, Chang PP, Gao JB, Shuai XM, Wang GB, Wang Z, Wang L. Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Appl Mater Interf. 2016;8:6577–85.

    Article  CAS  Google Scholar 

  64. Ginzburg VV, Balijepailli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 2007;7:3716–22.

    Article  CAS  PubMed  Google Scholar 

  65. Almada M, Burboa MG, Robles E, Gutiérrez LE, Valdés MA, Juárez J. Interaction and cytotoxic effects of hydrophobized chitosan nanoparticles on MDA-MB-231, HeLa and Arpe-19 cell lines. Curr Top Med Chem. 2014;14(6):692–701.

    Article  CAS  PubMed  Google Scholar 

  66. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moyano DF, Goldsmith M, Solfiell DJ, Landesman-Milo D, Miranda OR, Peer D, Rotello VM. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 2012;134(9):3965–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  69. Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. 2014;2014:498420.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces. 2010;75(1):300–9.

    Article  CAS  PubMed  Google Scholar 

  71. Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L, et al. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale. 2015;7(25):11155–62.

    Article  CAS  PubMed  Google Scholar 

  72. Maurizi L, Papa AL, Dumont L, Bouyer F, Walker P, Vandroux D, et al. Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J Biomed Nanotechnol. 2015;11(1):126–36.

    Article  CAS  PubMed  Google Scholar 

  73. Wang Q, Shen M, Zhao T, Xu Y, Lin J, Duan Y, et al. Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep. 2015;5:7774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from projects FIS 11/02571 (Instituto de Salud Carlos III, Spain) and PE-2012-FQM-694 (Junta de Andalucía, Spain) and the financial support of the Erasmus Mundus–JOSYLEEM Program in the form of a post-doctoral fellowship to M. El-Hammadi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita López-Viota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Viota, M., El-Hammadi, M.M., Cabeza, L. et al. Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs. AAPS PharmSciTech 18, 3042–3052 (2017). https://doi.org/10.1208/s12249-017-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0792-3

KEY WORDS

Navigation