Skip to main content

Advertisement

Log in

Microemulsion Formulations for the Transdermal Delivery of Lapachol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This project was carried out to investigate the feasibility of using microemulsions for transdermal delivery of lapachol. From the screening of surfactants and oils, a range of microemulsions were developed using oleic acid, a mixture of Cremophor EL and Tween 20 and water. The solubility of lapachol was determined in these ingredients and in the formulated microemulsions. The microemulsions were characterised using cross-polarising light microscopy, their electrical conductivity, pH, zeta potential and rheology were analysed, and they were also investigated using small-angle X-ray scattering and differential scanning calorimetry. Ex vivo studies were performed using porcine ear skin and Franz diffusion cells to investigate the permeation and retention of lapachol. Systems containing different concentrations of Cremophor EL (8.4–41.6%), Tween 20 (5.4–41.6%) and oleic acid (12–31.9%) are able to form microemulsions. Lapachol was delivered more effectively through the skin from all of the microemulsions tested than by the control (oleic acid). These studies indicated that microemulsions incorporating lapachol were formed successfully and that these enhanced drug delivery and retention in the skin. Microemulsion systems may, therefore, provide promising vehicles for percutaneous delivery of lapachol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimetry

HLB:

Hydrophilic-lipophilic balance

HPLC:

High-performance liquid chromatography

PEG 400:

Polyethylene glycol-400

SAXS:

Small-angle X-ray scattering

References

  1. Hussain H, Krohn K, Ahmad VU, Miana GA, Green IR. Lapachol: an overview. ARKIVOC. 2007;2:145–71.

    Google Scholar 

  2. Almeida ERD. Preclinical and clinical studies of lapachol and beta-lapachone. Open Nat Prod J. 2009;2(1):42–7.

    Article  Google Scholar 

  3. Ferreira SB, Gonzaga DTG, Santos WC, Araújo KG, Ferreira VF. beta-Lapachona: Sua Importância em Química Medicinal e Modificações Estruturais. Rev Virtual Quím. 2010;2(2):140–60.

    CAS  Google Scholar 

  4. Tabosa MAM, de Melo EKS, de Souza Dantas IMF, de Santana DP, Leal LB. Physicochemical characterization of lapachol. Afr J Pharm Pharmacol. 2015;9(5):131–8.

    CAS  Google Scholar 

  5. de Almeida ER, da Silva Filho AA, Dos Santos ER, Lopes CAC. Antiinflammatory action of lapachol. J Ethnopharmacol. 1990;29(2):239–41.

    Article  PubMed  Google Scholar 

  6. Guerra MO, Mazoni A, Brandão M, Peters V. Toxicology of lapachol in rats: embryolethality. Rev Bras Biol. 2001;61(1):171–4.

    Article  Google Scholar 

  7. de Andrade-Neto VF, Goulart MO, da Silva Filho JF, da Silva MJ, Pinto Mdo C, Pinto AV, et al. Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett. 2004;14(5):1145–9. https://doi.org/10.1016/j.bmcl.2003.12.069.

    Article  PubMed  Google Scholar 

  8. Peres RS, Santos GB, Cecilio NT, Jabor VA, Niehues M, Torres BG, et al. Lapachol, a compound targeting pyrimidine metabolism, ameliorates experimental autoimmune arthritis. Arthritis Res Ther. 2017;19(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pisani DE, Elliot AJ, Hinman DR, Aaronson LM, Pardini RS. Relationship between inhibition of mitochondrial respiration by naphthoquinones, their antitumor activity, and their redox potential. Biochem Pharmacol. 1986;35(21):3791–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lira AA, Sester EA, Carvalho AL, Strattmann RR, Albuquerque MM, Wanderley AG, et al. Development of lapachol topical formulation: anti-inflammatory study of a selected formulation. AAPS PharmSciTech. 2008;9(1):163–8. https://doi.org/10.1208/s12249-007-9002-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lima NM, Correia CS, Leon LL, Machado G, Madeira MF, Santana AEG, et al. Antileishmanial activity of lapachol analogues. Mem Inst Oswaldo Cruz. 2004;99(7):757–61.

    Article  CAS  PubMed  Google Scholar 

  12. Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B: Biointerfaces. 2010;75(1):356–62. https://doi.org/10.1016/j.colsurfb.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  13. Chaiyana W, Rades T, Okonogi S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm. 2013;452(1–2):201–10. https://doi.org/10.1016/j.ijpharm.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  14. Hathout RM, Woodman TJ, Mansour S, Mortada ND, Geneidi AS, Guy RH. Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci. 2010;40(3):188–96. https://doi.org/10.1016/j.ejps.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  15. Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: in vitro/in vivo evaluation. Int J Pharm. 2013;453(2):569–78. https://doi.org/10.1016/j.ijpharm.2013.06.009.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao JH, Ji L, Wang H, Chen ZQ, Zhang YT, Liu Y, et al. Microemulsion-based novel transdermal delivery system of tetramethylpyrazine: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2011;6:1611–9. https://doi.org/10.2147/IJN.S23597.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikumbh KV, Sevankar SG, Patil MP. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Delivery. 2015;22(4):509–215. https://doi.org/10.3109/10717544.2013.859186.

    Article  CAS  PubMed  Google Scholar 

  18. Friberg SE. Micelles, microemulsions, liquid crystals, and the structure of stratum corneum lipids. J Soc Cosmet Chem. 1990;41(3):155–71.

    CAS  Google Scholar 

  19. Yu A, Wang H, Wang J, Cao F, Gao Y, Cui J, et al. Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded microemulsion. J Pharm Sci. 2011;100(3):933–41. https://doi.org/10.1002/jps.22333.

    Article  CAS  PubMed  Google Scholar 

  20. Hosny KM, Hassan AH. Intranasal in situ gel loaded with saquinavir mesylate nanosized microemulsion: preparation, characterization, and in vivo evaluation. Int J Pharm. 2014;475(1–2):191–7. https://doi.org/10.1016/j.ijpharm.2014.08.064.

    Article  CAS  PubMed  Google Scholar 

  21. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  22. Azeem A, Ahmad FJ, Khar RK, Talegaonkar S. Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech. 2009;10(4):1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boelsma E, Tanojo H, Boddé H, Ponec M. Assessment of the potential irritancy of oleic acid on human skin: evaluation in vitro and in vivo. Toxicol in Vitro. 1996;10(6):729–42.

    Article  CAS  PubMed  Google Scholar 

  24. Martins M, Veiga F. Promotores de permeação para a liberação transdérmica de fármacos: uma nova aplicação para as ciclodextrinas. Braz J Pharm Sci. 2002;38(1):33–54.

    CAS  Google Scholar 

  25. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul. 2008;2(3):238–57.

    Article  CAS  PubMed  Google Scholar 

  26. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.

    Article  CAS  PubMed  Google Scholar 

  27. Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4):237–46.

    Article  CAS  PubMed  Google Scholar 

  28. Bhatia G, Zhou Y, Banga AK. Adapalene microemulsion for transfollicular drug delivery. J Pharm Sci. 2013;102(8):2622–31. https://doi.org/10.1002/jps.23627.

    Article  CAS  PubMed  Google Scholar 

  29. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B: Biointerfaces. 2013;102:86–94. https://doi.org/10.1016/j.colsurfb.2012.08.011.

    Article  CAS  PubMed  Google Scholar 

  30. Baroli B, López-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Méndez J. Microemulsions for topical delivery of 8-methoxsalen. J Control Release. 2000;69(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  31. Epifano F, Genovese S, Fiorito S, Mathieu V, Kiss R. Lapachol and its congeners as anticancer agents: a review. Phytochem Rev. 2013;13(1):37–49. https://doi.org/10.1007/s11101-013-9289-1.

    Article  Google Scholar 

  32. Hashem FM, Shaker DS, Ghorab MK, Nasr M, Ismail A. Formulation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS PharmSciTech. 2011;12(3):879–86. https://doi.org/10.1208/s12249-011-9653-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, Liu J, Yang X, Zhao X, Xu H. Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J Pharm Pharmacol. 2005;57(2):259–64. https://doi.org/10.1211/0022357055407.

    Article  CAS  PubMed  Google Scholar 

  34. Meagher MJ, Leone B, Turnbull TL, Ross RD, Zhang Z, Roeder RK. Dextran-encapsulated barium sulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent. J Nanopart Res. 2013;15:1246. https://doi.org/10.1007/s11051-013-2146-8.

    Article  Google Scholar 

  35. Ge S, Lin Y, Lu H, Li Q, He J, Chen B, et al. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm. 2014;465(1–2):120–31. https://doi.org/10.1016/j.ijpharm.2014.02.012.

    Article  CAS  PubMed  Google Scholar 

  36. Podlogar F, Gasperlin M, Tomsic M, Jamnik A, Rogac MB. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods. Int J Pharm. 2004;276(1–2):115–28. https://doi.org/10.1016/j.ijpharm.2004.02.018.

    Article  CAS  PubMed  Google Scholar 

  37. Mitra RK, Paul BK. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+ Brij-35) and butanol. J Colloid Interface Sci. 2005;283(2):565–77.

    Article  CAS  PubMed  Google Scholar 

  38. Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97: 1-butanol. AAPS PharmSciTech. 2006;7(2):E99–E104.

    Article  PubMed Central  Google Scholar 

  39. Podlogar F, Bester Rogac M, Gasperlin M. The effect of internal structure of selected water-Tween 40-Imwitor 308-IPM microemulsions on ketoprofene release. Int J Pharm. 2005;302(1–2):68–77. https://doi.org/10.1016/j.ijpharm.2005.06.023.

    Article  CAS  PubMed  Google Scholar 

  40. Mouri A, Diat O, El Ghzaoui A, Bauer C, Maurel JC, Devoisselle JM, et al. Phase behavior of reverse microemulsions based on Peceol((R)). J Colloid Interface Sci. 2014;416:139–46. https://doi.org/10.1016/j.jcis.2013.10.058.

    Article  CAS  PubMed  Google Scholar 

  41. Regev O, Ezrahi S, Aserin A, Garti N, Wachtel E, Kaler E, et al. A study of the microstructure of a four-component nonionic microemulsion by cryo-TEM, NMR, SAXS, and SANS. Langmuir. 1996;12(3):668–74.

    Article  CAS  Google Scholar 

  42. Sintov AC, Greenberg I. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. Int J Pharm. 2014;471(1):516–24.

    Article  CAS  PubMed  Google Scholar 

  43. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254(2):99–107. https://doi.org/10.1016/s0378-5173(02)00632-4.

    Article  CAS  PubMed  Google Scholar 

  44. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21. https://doi.org/10.1016/j.ijpharm.2013.02.040.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratório Nacional de Luz Síncroton (LNLS, Campinas SP, Brazil). LNLS is acknowledged through the projects D11A-SAXS1-14558. We especially thank SAXS staff for the support. The authors also thank FECDA/NUDFAC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Bastos Leal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabosa, M.A.M., de Andrade, A.R.B., Lira, A.A.M. et al. Microemulsion Formulations for the Transdermal Delivery of Lapachol. AAPS PharmSciTech 19, 1837–1846 (2018). https://doi.org/10.1208/s12249-018-0995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0995-2

KEY WORDS

Navigation