Skip to main content

Advertisement

Log in

Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acarturk F. Mucoadhesive vaginal drug delivery systems. Recent Pat Drug Deliv Formul. 2009;3(3):193–205. https://doi.org/10.2174/187221109789105658.

    Article  CAS  PubMed  Google Scholar 

  2. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103(2):301–13. https://doi.org/10.1016/j.jconrel.2004.11.034.

    Article  CAS  PubMed  Google Scholar 

  3. De Araújo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38(6):643–52. https://doi.org/10.3109/03639045.2011.623355.

    Article  CAS  PubMed  Google Scholar 

  4. Okada H, Hillery AM. Vaginal drug delivery. In: Hillery AM, Swarbrick J, Lloyd AW, editors. Drug delivery and targeting for pharmacists and pharmaceutical scientists. New York and London: CRC Press; 2001. p. 274–97.

    Google Scholar 

  5. Rahamatullah S, Thakur Raghu Raj S, Martin James G, Woolfson AD, Ryan FD. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–101. https://doi.org/10.4103/0975-7406.76478.

    Article  Google Scholar 

  6. Carvalho FC, Campos ML, Peccinini RG, Gremião MPD. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur J Pharm Biopharm. 2013;84(1):219–27. https://doi.org/10.1016/j.ejpb.2012.11.021.

    Article  CAS  PubMed  Google Scholar 

  7. Collings PJ, Hird M. Introduction to liquid crystals: chemistry and physics. CRC Press; 2017.

  8. Calandra P, Caschera D, Turco Liveri V, Lombardo D. How self-assembly of amphiphilic molecules can generate complexity in the nanoscale. Colloids Surf A Physicochem Eng Asp. 2015;484:164–83. https://doi.org/10.1016/j.colsurfa.2015.07.058.

    Article  CAS  Google Scholar 

  9. Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv. 2018;8(13):6978–87. https://doi.org/10.1039/c7ra12008g.

    Article  CAS  Google Scholar 

  10. Malmsten M. Surfactants and polymers in drug delivery. Surfactants and polymers in drug delivery. New York: Marcel Dekker, Inc; 2003.

    Google Scholar 

  11. Fonseca-Santos B, dos Santos AM, Rodero CF, Daflon Gremião MP, Chorilli M. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine. 2016;11:4553–62. https://doi.org/10.2147/IJN.S108675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oyafuso MH, Carvalho FC, Takeshita TM, de Souza ALR, Araújo DR, Merino V, et al. Development and in vitro evaluation of lyotropic liquid crystals for the controlled release of dexamethasone. Polymers (Basel). 2017;9(8):1–16. https://doi.org/10.3390/polym9080330.

    Article  CAS  Google Scholar 

  13. Salmazi R, Calixto G, Bernegossi J, Aparecido Dos M, Ramos S, Bauab TM, et al. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int J Nanomedicine. 2015;10:4815–24. https://doi.org/10.2147/IJN.S82385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel HR, Patel RP, Patel MM. Poloxamers: a pharmaceutical excipients with therapeutic behaviors. Int J Pharmtech Res. 2009;1(2):299–303. https://doi.org/10.1016/j.socscimed.2011.03.025.

    Article  CAS  Google Scholar 

  15. Ren X, Svirskis D, Alany RG, Zargar-Shoshtari S, Wu Z. In-situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery. Int J Pharm. 2012;431:130–7. https://doi.org/10.1016/j.ijpharm.2012.04.020.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Liang X, Ma P, Tao Y, Wu X, Wu X, et al. Phytantriol-based in situ liquid crystals with long-term release for intra-articular administration. AAPS PharmSciTech. 2015;16(4):846–54. https://doi.org/10.1208/s12249-014-0277-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Phelps J, Bentley MVLB, Lopes LB. In situ gelling hexagonal phases for sustained release of an anti-addiction drug. Colloids Surf B: Biointerfaces. 2011;87(2):391–8. https://doi.org/10.1016/j.colsurfb.2011.05.048.

    Article  CAS  PubMed  Google Scholar 

  18. Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide “on-demand” drug delivery in vitro and in vivo. J Control Release. 2009;135(3):218–26. https://doi.org/10.1016/j.jconrel.2009.01.009.

    Article  CAS  PubMed  Google Scholar 

  19. Boiko YA, Kravchenko IA, Novikova NS, Egorova AV, Aleksandrova DI. Effects of liquid crystal systems based on cholesterol esters on skin permeability. Pharm Chem J. 2013;47(7):393–6. https://doi.org/10.1007/s11094-013-0966-6.

    Article  CAS  Google Scholar 

  20. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40. https://doi.org/10.1016/j.drudis.2010.09.006.

    Article  CAS  PubMed  Google Scholar 

  21. Crane JM, Tamm LK. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J. 2004;86(5):2965–79. https://doi.org/10.1016/S0006-3495(04)74347-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toffoli D, Courrol L, Tarelho LV. Estudo do complexo Hipericina-Európio para uso em diagnóstico. Boletim Técnico da Faculdade de Tecnologia de São Paulo; 2006.

  23. Sytar O, Švedienė J, Ložienė K, Paškevičius A, Kosyan A, Taran N. Antifungal properties of hypericin , hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm Biol. 2016;54(12):3121–5. https://doi.org/10.1080/13880209.2016.1211716.

    Article  CAS  PubMed  Google Scholar 

  24. Shih C, Wu C, Wu W, Hsiao Y, Ko J. Hypericin inhibits hepatitis C virus replication via deacetylation and down-regulation of heme oxygenase-1. Phytomedicine. 2017;46:193–8. https://doi.org/10.1016/j.phymed.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  25. Dellafiora L, Galaverna G, Cruciani G, Asta CD, Bruni R. On the mechanism of action of anti-inflammatory activity of hypericin : an in silico study pointing to the relevance of Janus kinases inhibition. Molecules. 2018;23(12):3058. https://doi.org/10.3390/molecules23123058.

    Article  CAS  PubMed Central  Google Scholar 

  26. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2017;473(4):347–64. https://doi.org/10.1042/BJ20150942.

    Article  CAS  Google Scholar 

  27. Ghazanfarpour M, Abdolahian S, Khadivzadeh T, Kaviani M. Hypericum perforutum and vitamin B6 as a treatment for premenstrual syndrome. 2017;12(2):1–6. https://doi.org/10.5812/jjnpp.34093.

  28. Penjweini R, Deville S, Ethirajan A, Ameloot M. Investigating the intracellular dynamics of correlation spectroscopy. In: Hamblin MR, Avci P, Prow T, editors. Nanoscience in dermatology. London: Academic Press; 2016. p. 275–86.

  29. Kamal A, Ahmad FJ, Ahmad S, Saleem K. A validated HPLC method for the quantification of hypericin in hypericum perforatum. Asian J Chem. 2012;24(10):4689–92.

  30. Nunes KM, Teixeira CCC, Kaminski RCK, Couto O, Pulcinelli SH, Freitas O, et al. The monoglyceride content affects the self-assembly behavior , rheological properties , syringeability , and mucoadhesion of in situ e gelling liquid crystalline phase. 2016:1–10. https://doi.org/10.1016/j.xphs.2016.05.005.

  31. Wu Z, Alany RG, Tawfeek N, Falconer J, Zhang W, Hassan IM, et al. A study of microemulsions as prolonged-release injectables through in-situ phase transition. J Control Release. 2014;174:188–94. https://doi.org/10.1016/j.jconrel.2013.11.022.

    Article  CAS  PubMed  Google Scholar 

  32. Calixto GMF, Victorelli FD, Dovigo LN, Chorilli M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech. 2017;19(2):820–36. https://doi.org/10.1208/s12249-017-0890-2.

    Article  CAS  PubMed  Google Scholar 

  33. Shrestha LK, Sato T, Shrestha RG, Hill J, Ariga K, Aramaki K. Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. Phys Chem Chem Phys. 2011;13(11):4911–8. https://doi.org/10.1039/C0CP02024A.

    Article  CAS  PubMed  Google Scholar 

  34. Mezzenga R, Meyer C, Servais C, Romoscanu AI, Sagalowicz L, Hayward RC. Shear rheology of lyotropic liquid crystals : a case study. 2005;21(8):3322–33. https://doi.org/10.1021/la046964b.

  35. Cordobés BF, Franco JM, Gallegos C. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol / water / heptane systems. Grasas Aceites. 2005;56:96–105.

  36. Zhao J, Wang ZN, Wei XL, Liu F, Zhou W, Tang XL, et al. Phase behaviour and rheological properties of the lamellar liquid crystals formed in dodecyl polyoxyethylene polyoxypropylene ether/water system. NISCAIR. 2011;50(5):641–9.

  37. Chorilli M, Prestes PS, Rigon RB, Leonardi GR, Chiavacci LA, Sarmento VHV, et al. Structural characterization and in vivo evaluation of retinyl palmitate in non-ionic lamellar liquid crystalline system. Colloids Surf B: Biointerfaces. 2011;85(2):182–8. https://doi.org/10.1016/j.colsurfb.2011.02.027.

    Article  CAS  PubMed  Google Scholar 

  38. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18. https://doi.org/10.1016/j.ejpb.2008.09.028.

    Article  CAS  PubMed  Google Scholar 

  39. Yakubov GE, Singleton S, Williamson AM. Methods for assessing mucoadhesion: the experience of an integrative approach. In: Khutoryanskiy VV, editor. Mucoadhesive materials and drug delivery systems. United Kingdom: Wiley; 2014. p. 197–232.

    Google Scholar 

  40. Ruela ALM, Carvalho FC, Pereira GR. Exploring the phase behavior of monoolein/oleic acid/water systems for enhanced donezepil administration for Alzheimer disease treatment. J Pharm Sci. 2016;105(1):71–7. https://doi.org/10.1016/j.xphs.2015.10.016.

    Article  CAS  PubMed  Google Scholar 

  41. Rençber S, Karavana SY, Yilmaz FF, Eraç B, Nenni M, Gurer-Orhan H, et al. Formulation and evaluation of fluconazole loaded oral strips for local treatment of oral candidiasis. J Drug Deliv Sci Technol. 2019;49:615–21. https://doi.org/10.1016/j.jddst.2018.12.035.

    Article  CAS  Google Scholar 

  42. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  43. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309(1–2):44–50. https://doi.org/10.1016/j.ijpharm.2005.10.044.

    Article  CAS  PubMed  Google Scholar 

  44. Pan J, Tristram-Nagle S, Nagle JF. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;80(2):021931. https://doi.org/10.1103/PhysRevE.80.021931.

    Article  CAS  Google Scholar 

  45. Joniova J, Rebič M, Strejčková A, Huntosova V, Staničová J, Jancura D, et al. Formation of large hypericin aggregates in giant unilamellar vesicles—experiments and modeling. Biophys J. 2017;112(5):966–75. https://doi.org/10.1016/j.bpj.2017.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bánó G, Staničová J, Jancura D, Marek J, Bánó M, Uličný J, et al. On the diffusion of hypericin in dimethylsulfoxide/water mixtures-the effect of aggregation. J Phys Chem B. 2011;115(10):2417–23. https://doi.org/10.1021/jp109661c.

    Article  CAS  PubMed  Google Scholar 

  47. Ho YF, Wu MH, Cheng BH, Chen YW, Shih MC. Lipid-mediated preferential localization of hypericin in lipid membranes. Biochim Biophys Acta Biomembr. 2009;1788(6):1287–95. https://doi.org/10.1016/j.bbamem.2009.01.017.

    Article  CAS  Google Scholar 

  48. Eriksson ESE, Eriksson LA. The influence of cholesterol on the properties and permeability of hypericin derivatives in lipid membranes. J Chem Theory Comput. 2011;7(3):560–74. https://doi.org/10.1021/ct100528u.

    Article  CAS  PubMed  Google Scholar 

  49. Yu AX, Mu Y, Xu M, Xia G, Wang J, Liu Y, et al. Preparation and characterization of mucosal adhesive and two-step drug releasing cetirizine-chitosan nanoparticle. Carbohydr Polym. 2017;173:600–9. https://doi.org/10.1016/j.carbpol.2017.05.067.

    Article  CAS  PubMed  Google Scholar 

  50. Fonseca Y, Pitol DL. Evaluation of protective effect of a water-in-oil microemulsion incorporating quercetin against UVB-induced damage in hairless mice skin. J Pharm Pharm Sci. 2010;13(2):274–85. https://doi.org/10.18433/J3830G.

    Article  PubMed  Google Scholar 

  51. Shen H, Crowston JG, Huber F, Saubern S, Mclean KM, Hartley PG. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions. Biomaterials. 2010;31(36):9473–81. https://doi.org/10.1016/j.biomaterials.2010.08.030.

    Article  CAS  PubMed  Google Scholar 

  52. Hosmer J, Reed R, Bentley MVLB, Nornoo A, Lopes LB. Microemulsions containing medium-chain glycerides as transdermal delivery systems for hydrophilic and hydrophobic drugs. AAPS PharmSciTech. 2009;10(2):589–96. https://doi.org/10.1208/s12249-009-9251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gosenca M, Bešter-Rogac M, Gašperlin M. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate. Eur J Pharm Sci. 2013;50:114–22. https://doi.org/10.1016/j.ejps.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  54. Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci. 2016;7:1–20. https://doi.org/10.3389/fpls.2016.00560.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) that was funded this research (grant #2017/10016-2), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Programa de Apoio ao Desenvolvimento Científico (PADC).This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana Maria Fioramonti Calixto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, P.R., Calixto, G.M.F., da Silva, I.C. et al. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 20, 225 (2019). https://doi.org/10.1208/s12249-019-1439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1439-3

KEY WORDS

Navigation