Skip to main content

Advertisement

Log in

Improvement in Bioavailability and Pharmacokinetic Characteristics of Efavirenz with Booster Dose of Ritonavir in PEGylated PAMAM G4 Dendrimers

  • Research Article
  • Theme: Recent Advances on Drug Delivery Systems for Viral Infections
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Efavirenz (EFV) with a booster dose of ritonavir (RTV) (EFV-RTV) inhibits the metabolism of EFV and improves its bioavailability. However, inadequate organ perfusion with surface permeability glycoprotein (P-gp) efflux sustains the viable HIV. Hence, the present investigations were aimed to evaluate the pharmacokinetics and tissue distribution efficiency of EFV by encapsulating it into PEGyalated PAMAM (polyamidoamine) G4 dendrimers with a booster dose of RTV (PPG4ER). The entrapment efficiency of PEGylated PAMAM G4 dendrimers was found to be 94% and 92.12% for EFV and RTV respectively with a zeta potential of 0.277 mV. The pharmacokinetics and tissue distribution behavior of EFV within PPG4ER was determined by developing and validating a simple, sensitive, and reliable bioanalytical method of RP-HPLC. The developed bioanalytical method was very sensitive with a quantification limit of 18.5 ng/ml and 139.2 ng/ml for EFV and RTV, respectively. The comparative noncompartmental pharmacokinetic parameters of EFV were determined by administrating a single intraperitoneal dose of EFV, EFV-RTV, and PPG4ER to Wistar rats. The PPG4ER produced prolonged release of EFV with a mean residential time (MRT) of 24 h with Cmax 7.68 µg/ml in plasma against EFV-RTV with MRT 11 h and Cmax 3.633 µg/ml. The PPG4ER was also detected in viral reservoir tissues (lymph node and spleen) for 3–4 days, whereas free EFV and EFV-RTV were cleared within 72 h. The pharmacokinetic data including Cmax, t1/2, AUCtot, and MRT were significantly improved in PPG4ER as compared with single EFV and EFV-RTV. This reveals that the PPG4ER has great potential to target the virus harbors tissues and improve bioavailability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): new insights into the clinical aspects and molecular pathogenesis of adult T-Cell leukemia / lymphoma (ATLL) and tropical spastic paraparesis/HTLV- associated myelopathy (TSP/HAM). Macro Res Tech. 2005;196(March):176–96.

    Article  Google Scholar 

  2. Desai M, Iyer G, Dikshit RK. Antiretroviral drugs : critical issues and recent advances. Ind J Pharmacol. 2012;44(3):288–96.

    Article  CAS  Google Scholar 

  3. Piketty C, Race E, Castiel P, Belec L, Peytavin G, Si-mohamed A, et al. Efficacy of a five-drug combination including ritonavir, saquinavir and efavirenz in patients who failed on a conventional triple-drug regimen : phenotypic resistance to protease inhibitors predicts outcome of therapy. AIDS. 1999;13(11):71–7.

    Article  Google Scholar 

  4. Lembo D, Donalisio M, Civra A, Argenziano M, Lembo D, Donalisio M, et al. Expert opinion on drug delivery nanomedicine formulations for the delivery of antiviral drugs : a promising solution for the treatment of viral infections. Expert Opin Drug Deliv [Internet]. 2018;15(1):93–114. Available from: https://doi.org/10.1080/17425247.2017.1360863

  5. Barry M, Mulcahy F, Merry C, Gibbons S, Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.

    Article  CAS  PubMed  Google Scholar 

  6. Kappelhoff BS, Crommentuyn KML, De Maat MMR, Mulder JW, Huitema ADR, Beijnen JH. Practical guidelines to interpret plasma concentrations of antiretroviral drugs. Clin Pharmacokinet. 2004;43(13):845–53.

    Article  CAS  PubMed  Google Scholar 

  7. Adkins JC, Noble S. Efavirenz Drugs. 1998;56(6):1055–64.

    Article  CAS  PubMed  Google Scholar 

  8. Parienti JJ, Ragland K, Lucht F, De La Arnaud B, Dargàre S, Yazdanpanah Y, et al. Average adherence to boosted protease inhibitor therapy, rather than the pattern of missed doses, as a predictor of HIV RNA replication. Clin Infect Dis. 2010;50(8):1192–7.

    Article  PubMed  Google Scholar 

  9. Margolis L, Shattock R. Selective transmission of CCR5-utilizing HIV-1: the ‘gatekeeper’ problem resolved? Nat Rev. 2006;4(April):312–7.

    CAS  Google Scholar 

  10. John Gill, Charlotte Lewden, Mike Saag PR. Causes of death in HIV-1 – infected patients treated with antiretroviral therapy , 1996 – 2006 : collaborative analysis of 13 HIV cohort studies. Clin Inf Dis. 2010;50(10):1387–96.

  11. Kharwade R, More S, Mahajan N, Agrawal P. Functionalised dendrimers: potential tool for antiretroviral therapy. Curr Nanosci. 2020;16(5):708–22.

    Article  CAS  Google Scholar 

  12. Gupta S, Kesarla R, Chotai N, Omri A. Development and validation of reversed- phase HPLC gradient method for the estimation of efavirenz in plasma. Plos One. 2017;1–12.

  13. Kraft JC, Mcconnachie LA, Koehn J, Sun J, Collier AC, Collins C, et al. Mechanism-based pharmacokinetic (MBPK) models describe the complex plasma kinetics of three antiretrovirals delivered by a long-acting anti-HIV drug combination nanoparticle formulation John. J Cont Rel. [Internet]. 2018; Available from: https://doi.org/10.1016/j.jconrel.2018.02.003

  14. Tomalia DA, Hall VB, Hall M, Hedstrand DM. Starburst dendrimers :covalently fixed unimolecular assemblages reiminiscent of spheroidal micelles. Macromolecules. 1987;20(5):1164–7.

    Article  CAS  Google Scholar 

  15. Tomalia DA. Starburst™/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichimica Acta. 1993;26(1):91–101.

    CAS  Google Scholar 

  16. Shadrack DM, Mubofu EB, Nyandoro SS. Synthesis of polyamidoamine dendrimer for encapsulating tetramethylscutellarein for potential bioactivity enhancement. Int J Mol Sci. 2015;26363–77.

  17. Mario Ficker, Valentina Paolucci JBC. Improved large scale synthesis and characterization of small and medium generation PAMAM-dendrimers. Can J Chem. 2017;1–31.

  18. Esfand R, Tomalia DA. Laboratory synthesis of poly(amidoamine)(PAMAM) dendrimers. Dendrimers Other Dendritic Polym. 2002;1:587–604.

    Article  Google Scholar 

  19. Vögtle F, Gestermann S, Hesse R, Schwierz H, Windisch B. Functional dendrimers. Prog Polym Sci. 2000;25(7):987–1041.

    Article  Google Scholar 

  20. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):1–10.

    Article  CAS  Google Scholar 

  21. Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjugate Chem. 2008;19(ii):1660–72.

  22. Anisha AD, Shegokar R. Expert opinion on drug delivery polyethylene glycol ( PEG ): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv [Internet]. 2016;13(9):1257–75. Available from: https://doi.org/10.1080/17425247.2016.1182485

  23. Qi R, Gao Y, Tang Y, He RR, Le LT, He Y, et al. PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J. 2009;11(3):395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pyreddy S, Kumar P, Kumar P. Polyethylene glycolated PAMAM dendrimers-efavirenz conjugates. Int J Pharm Investig. 2014;4(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res. 2010;27(1):161–74.

    Article  CAS  PubMed  Google Scholar 

  26. Khambete H, Jain NP, Jain CP. Effect of polyethylene glycol chain Length on PEGylation of dendrimers. Asian J Pharm. 2017;11(1):7–12.

    Google Scholar 

  27. Shadrack DM, Swai HS, Munissi JJE, Mubofu EB, Nyandoro SS. Polyamidoamine dendrimers for enhanced solubility of small molecules and other desirable properties for site specific delivery: Insights from experimental and computational studies. Molecules. 2018;23(6).

  28. Zeng Y, Kurokawa Y, Hirano S. multiple generations on cytotoxicity and neuronal differentiation using Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxic Sci. 2016;41(3):351–70.

    Article  CAS  Google Scholar 

  29. Ahmed OAA, El-bassossy HM, El-sayed HM. D-α-tocopherol polyethylene glycol 1000 succinate based SNEDDS formulation : pharmacokinetics in rat plasma. Molecules. 2021;26(1435):1–12.

    Google Scholar 

  30. Hull MW, Montaner JSG. Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med. 2011;43(5):375–88.

    Article  CAS  PubMed  Google Scholar 

  31. Shibata A, Mcmullen E, Alex P, Abhijit A, Belshan M, et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type-1 treatments. AIDS Res Hum Retrovirus. 2013;29:1–12.

    Article  Google Scholar 

  32. Reddy VK, Swamy N, Rathod R, Sengupta P. Article A bioanalytical method for eliglustat quantification in rat plasma.J Chromat Sci. 2019;1–6. https://doi.org/10.1093/chromsci/bmz033.

  33. Fu Y, Sun X, Wang L, Chen S. Pharmacokinetics and tissue distribution study of pinosylvin in rats by ultra-high-performance liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. Evidence Based Compl Alternative Med. 2018. https://doi.org/10.1155/2018/4181084.

    Article  Google Scholar 

  34. Purvin S, Vuddanda PR, Singh SK, Jain A, Singh S. Pharmacokinetic and tissue distribution study of solid lipid nanoparticles of zidovudine in rats. J Nanotech. 2014. https://doi.org/10.1155/2014/854018.

    Article  Google Scholar 

  35. Bansal SK, Layloff T, Bush ED, Hamilton M, Hankinson EA, Landy JS, et al. Qualification of analytical instruments for use in the pharmaceutical industry : a scientific approach. AAPS Pharm SciTech. 2004;5(1):1–8.

    Google Scholar 

  36. Xu S, Yu J, Zhan J, Yang L, Guo L, Xu Y. Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. Biomed Res Int. 2017. https://doi.org/10.1155/2017/4684962.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lopez-pua Y, Lopez-cortes LF, Gatell M, Carne X. Determination of efavirenz in human plasma by high-performance liquid chromatography with ultraviolet detection.J Chromat B. 2001;763:53–9.

  38. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  39. Smith KM, Corporation W, Xu Y. Tissue sample preparation in bioanalytical assays. Bioanalysis. 2012;4(6):741–6.

    Article  CAS  PubMed  Google Scholar 

  40. Usami YU, Ki TO, Akai MN, Agisaka MS, Aneda TK. A simple HPLC method for simultaneous determination of lopinavir, ritonavir and efavirenz. Chem Pharm Bull. 2003;51(6):715–8.

    Article  CAS  Google Scholar 

  41. Dolan JW. System suitability. Lc Troubl. 2004;17(6):328–32.

    Google Scholar 

  42. Khan W, Sharma S, Kumar N. Bioanalytical method development , pharmacokinetics , and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Analysis;2012. https://doi.org/10.1002/dta.339.

  43. Bhinge SD, Malipatil SM, Sonawane LV. Bioanalytical method development and validation for simultaneous estimation of cefixime and dicloxacillin by RP-HPLC in human plasma. Acta Chim Slov. 2014;61:580–6.

    CAS  PubMed  Google Scholar 

  44. Jagadeeswaran M, Gopal N, Pavan K, Siva T. Quantitative estimation of lopinavir and ritonavir in tablets by RP-HPLC method. Pharm Analytica Acta. 2012;3(5):3–5.

    Google Scholar 

  45. Kiran BV, Rao BS, Dubey SS. Development and validation of a reversed-phase HPLC method for the determination of efavirenz in pharmaceutical dosage forms by internal standard method. J Phar Res. 2012;5(1):94–9.

    Google Scholar 

  46. Nathi R, Rao SS, Sahoo S, Sunkara N, Mohan VR. Stability indicating rp-hplc method development and validation of efavirenz in bulk and pharmaceutical dosage form. Int J Phar Bio Sci. 2017;7(2):223–9.

    CAS  Google Scholar 

  47. Kumar G, Sharma S, Shafiq N, Pandhi P, Kumar G, Sharma S, et al. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis pharmacokinetics and tissue distribution studies. Drug Delivery. 2011;18(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  48. Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, et al. Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother. 2013;57(7):3110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee SG, Lee J, Kim KM, Lee KI, Bae YS, Lee HJ. Pharmacokinetic study of NADPH oxidase inhibitor Ewha-18278, a pyrazole derivative. Pharmaceutics. 2019;11(482):2–8.

    Google Scholar 

  50. Kushwaha HN, Mohan NK, Sharma AK, Singh SK. Pharmacokinetic study and bioavailability of a novel synthetic trioxane antimalarial compound 97/63 in rats. Malar Res Treat. 2014. https://doi.org/10.1155/2014/759392.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1(2):87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement.AAPS Pharm SciTech.2017;18(8):3151–62.

  53. Kumar P, Lakshmi YS, Kondapi AK. An oral formulation of efavirenz-loaded lactoferrin nanoparticles with improved biodistribution and pharmacokinetic profile. HIV Med. 2017;18(7):452–62.

    Article  CAS  PubMed  Google Scholar 

  54. Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of Efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014;2014.

  55. Huang J, Gautam N, Bathena SPR, Roy U, McMillan JE, Gendelman HE, et al. UPLC-MS/MS quantification of nanoformulated ritonavir, indinavir, atazanavir, and efavirenz in mouse serum and tissues. J Chromatogr B Anal Technol Biomed Life Sci [Internet]. 2011;879(23):2332–8. Available from: https://doi.org/10.1016/j.jchromb.2011.06.032

  56. Wang Y, Li Y, Liu J, Li X. Pharmacokinetics and tissue distribution of PLGA- PLL-PEG-TF nanoparticles loaded with daunorubicin and tetrandrine following intravenous injection in the rats using LC-MS / MS. Ind J Pharm Edu Res. 2019;52(1):42–53.

    Article  CAS  Google Scholar 

  57. Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS Pharm SciTech. 2011;12(3):2–9.

    Google Scholar 

  58. Margolis DM. Mechanisms of HIV latency : an emerging picture of complexity. Curr HIV/AIDS Rep. 2010;7:37–43.

    Article  PubMed  Google Scholar 

  59. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV: mycobacterium avium Complex Disease.Clinical Info HIV Govt. 2021;

  60. Kharwade R, More S, Warokar A, Agrawal P, Mahajan N. Starburst PAMAM dendrimers: synthetic approaches, surface modifications, and biomedical applications. Arab J Chem [Internet]. 2020;13(7):6009–39. Available from: https://doi.org/10.1016/j.arabjc.2020.05.002

  61. Naha PC, Davoren M, Lyng FM, Byrne HJ. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol [Internet]. 2010;246(1–2):91–9. Available from: https://doi.org/10.1016/j.taap.2010.04.014

  62. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, et al. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm. 2013;10(1):249–60.

    Article  CAS  PubMed  Google Scholar 

  63. Kharwade R, Badole P, Mahajan N, More S. Toxicity and surface modification of dendrimers: a critical review. Curr Drug Deliv. 2021;18:1–15.

    Google Scholar 

  64. Imre S, Vlase L, Muntean DL. Bioanalytical method validation. Rev Rom Med Lab. 2008;10(1):13–21.

    Google Scholar 

  65. Wei Q, Yang Q, Wang Q, Sun C, Zhu Y, Niu Y, et al. Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers. AAPS PharmSciTech. 2018;19(8):3661–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kulhari H, Kulhari DP, Prajapati SK, Chauhan AS. Pharmacokinetic and pharmacodynamic studies of poly(amidoamine) dendrimer based simvastatin oral formulations for the treatment of hypercholesterolemia. Mol Pharm. 2013;10(7):2528–33.

    Article  CAS  PubMed  Google Scholar 

  67. Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VGM, Bansal V, et al. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep [Internet]. 2016;6(February):1–13. https://doi.org/10.1038/srep23179.

    Article  CAS  Google Scholar 

  68. Lu J, Li N, Gao Y, Li N, Guo Y, Liu H, et al. The effect of absorption-enhancement and the mechanism of the PAMAM dendrimer on poorly absorbable drugs. Molecules. 2018;23(8). https://doi.org/10.3390/molecules2308200

  69. Wang W, Xiong W, Wan J, Sun X, Xu H, Yang X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology. 2009;20(10). http://iopscience.iop.org/0957-4484/20/10/105103

  70. Kobayashi H, Kawamoto S, Bernardo M, Brechbiel MW, Knopp MV, Choyke PL. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release. 2006;111(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  71. Kojima C, Turkbey B, Ogawa M, Bernardo M, Regino CAS, Bryant LH, et al. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine Nanotechnology, Biol Med [Internet]. 2011;7(6):1001–8. https://doi.org/10.1016/j.nano.2011.03.007

  72. Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P, Porter CJ. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release [Internet]. 2009;140(2):108–16. https://doi.org/10.1016/j.jconrel.2009.08.005.

    Article  CAS  Google Scholar 

  73. Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1–2):11–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rohini Kharwade and Elizabeth Suresh completed experimental works and drafted the manuscript. Dr. Amol Warokar and Sachin More gave supporting investigation and discussion in a pharmacokinetic study. Dr. Nilesh Mahajan gave productive suggestions and experimental instruction and Dr. Ujwala Mahajan supervised.

Corresponding author

Correspondence to Rohini Kharwade.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Guest Editor: Claudio Salomon

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharwade, R., More, S., Suresh, E. et al. Improvement in Bioavailability and Pharmacokinetic Characteristics of Efavirenz with Booster Dose of Ritonavir in PEGylated PAMAM G4 Dendrimers. AAPS PharmSciTech 23, 177 (2022). https://doi.org/10.1208/s12249-022-02315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02315-8

KEY WORDS

Navigation