Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T01:55:45.185Z Has data issue: false hasContentIssue false

Domain of attraction of the quasi-stationary distributions for the Ornstein-Uhlenbeck process

Published online by Cambridge University Press:  14 July 2016

Manuel Lladser*
Affiliation:
Universidad de Chile
Jaime San Martín*
Affiliation:
Universidad de Chile
*
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo 3, Santiago 3, Chile
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo 3, Santiago 3, Chile

Abstract

Let (Xt) be a one-dimensional Ornstein-Uhlenbeck process with initial density function f : ℝ+ → ℝ+, which is a regularly varying function with exponent -(1 + η), η ∊ (0,1). We prove the existence of a probability measure ν with a Lebesgue density, depending on η, such that for every AB(R+):

Type
Research Papers
Copyright
Copyright © by the Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bingham, N., Goldie, C., and Teugels, J. (1987). Regular Variation. Cambridge University Press.Google Scholar
Collet, P., Martínez, S. and San Martín, J. (1995). Asymptotic laws for one-dimensional diffusions conditioned to nonabsorption. Ann. Prob. 23, 13001314.Google Scholar
Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II. John Wiley, New York.Google Scholar
Ferrari, P., Kesten, H. and Martínez, S. (1996). R-positivity, quasi-stationary distributions and ratio limit theorem for a class of probabilistic automata. Ann. Appl. Prob. 6, 577616.Google Scholar
Fierro, R., Martínez, S. and San Martín, J. (1999). Limiting conditional and conditional invariant distributions for the Poisson process with negative drift. J. Appl. Prob. 36, 11941209.CrossRefGoogle Scholar
Ferrari, P., Kesten, H., Martínez, S., and Picco, P. (1995). Existence of quasi stationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501521.Google Scholar
Karatzas, I., and Shreve, S. (1994). Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York.Google Scholar
Mandl, P. (1961). Spectral theory of semi-groups connected with diffusion processes and its application. Czech. Math. J. 11, 558569.Google Scholar
Martínez, S. and San Martín, J. (1994). Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Prob. 31, 911920.CrossRefGoogle Scholar
Martínez, S., Picco, P. and San Martín, J. (1998). Domain of attraction of quasi-stationary distributions for the Brownian motion with drift. Adv. Appl. Prob. 30, 385408.CrossRefGoogle Scholar
Rogers, L. (1985). Smooth transition densities for one-dimensional diffusions. Bull. London Math. Soc. 17, 157161.Google Scholar
Sotomayor, J. (1979). Lecciones de Ecuaciones Diferenciales Ordinarias. IMPA, Rio de Janeiro.Google Scholar