Skip to main content

Advertisement

Log in

Identification of microRNA Biomarkers of Response to Neoadjuvant Chemoradiotherapy in Esophageal Adenocarcinoma Using Next Generation Sequencing

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Clinical trials report improved overall survival following neoadjuvant chemoradiotherapy in patients undergoing surgery for esophageal adenocarcinoma, with a 10–15% survival improvement. MicroRNAs (miRNAs) are small noncoding RNAs that are known to direct the behavior of cancers, including response to treatment. We investigated the ability of miRNAs to predict outcomes after neoadjuvant chemoradiotherapy.

Methods

Endoscopic biopsies from esophageal adenocarcinomas were obtained before neoadjuvant chemoradiotherapy and esophagectomy. miRNA levels were measured in the biopsies using next generation sequencing and compared with pathological response in the surgical resection, and subsequent survival. miRNA ratios that predicted pathological response were identified by Lasso regression and leave-one-out cross-validation. Association between miRNA ratio candidates and relapse-free survival was assessed using Kaplan–Meier analysis. Cox regression and Harrell’s C analyses were performed to assess the predictive performance of the miRNAs.

Results

Two miRNA ratios (miR-4521/miR-340-5p and miR-101-3p/miR-451a) that predicted the pathological response to neoadjuvant chemoradiotherapy were found to be associated with relapse-free survival. Pretreatment expression of these two miRNA ratios, pretreatment tumor differentiation, posttreatment AJCC histopathological tumor regression grading, and posttreatment tumor clearance/margins were significant factors associated with survival in Cox regression analysis. Multivariate analysis of the two ratios together with pretherapy factors resulted in a risk prediction accuracy of 85% (Harrell’s C), which was comparable with the prediction accuracy of the AJCC treatment response grading (77%).

Conclusions

miRNA-ratio biomarkers identified using next generation sequencing can be used to predict disease free survival following neoadjuvant chemoradiotherapy and esophagectomy in patients with esophageal adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dubecz A, Solymosi N, Stadlhuber RJ, Schweigert M, Stein HJ, Peters JH. Does the incidence of adenocarcinoma of the esophagus and gastric cardia continue to rise in the twenty-first century? A SEER Database Analysis. J Gastrointest Surg. 2013;18(1):124–9.

    Article  Google Scholar 

  2. van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.

    Article  PubMed  Google Scholar 

  3. Donahue JM, Nichols FC, Li Z, et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann Thorac Surg. 2009;87(2):392–8; discussion 398–9.

  4. Klevebro F, Alexandersson von Dobeln G, Wang N, et al. A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction. Ann Oncol. 2016;27(4):660–7.

    Article  PubMed  CAS  Google Scholar 

  5. Shapiro J, van Lanschot JJB, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090–8.

    Article  PubMed  Google Scholar 

  6. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tang S, Wu WK, Li X, et al. Stratification of digestive cancers with different pathological features and survival outcomes by MicroRNA expression. Sci Rep. 2016;6:24466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  PubMed  CAS  Google Scholar 

  10. Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Sem Cancer Biol. 2013;23(6 Pt B):512–21.

  11. Skinner HD, Lee JH, Bhutani MS, et al. A validated miRNA profile predicts response to therapy in esophageal adenocarcinoma. Cancer. 2014;120(23):3635–41.

    Article  PubMed  CAS  Google Scholar 

  12. Odenthal M, Hee J, Gockel I, et al. Serum microRNA profiles as prognostic/predictive markers in the multimodality therapy of locally advanced adenocarcinomas of the gastroesophageal junction. Int J Cancer. 2014;137(1):230–7.

    Article  PubMed  CAS  Google Scholar 

  13. Odenthal M, Bollschweiler E, Grimminger PP, et al. MicroRNA profiling in locally advanced esophageal cancer indicates a high potential of miR-192 in prediction of multimodality therapy response. Int J Cancer. 2013;133(10):2454–63.

    Article  PubMed  CAS  Google Scholar 

  14. Lynam-Lennon N, Bibby BA, Mongan AM, et al. Low miR-187 expression promotes resistance to chemoradiation therapy in vitro and correlates with treatment failure in patients with esophageal adenocarcinoma. Mol Med. 2016;22.

  15. Ko MA, Zehong G, Virtanen C, et al. MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 2012;94(4):1094–102; discussion 1102–3.

  16. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

  17. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60.

  18. Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinform. 2011;12:480.

    Article  CAS  Google Scholar 

  19. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gordon GJ, Jensen RV, Hsiao LL, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62(17):4963–7.

    PubMed  CAS  Google Scholar 

  21. Munoz-Largacha JA, Gower AC, Sridhar P, et al. miRNA profiling of primary lung and head and neck squamous cell carcinomas: addressing a diagnostic dilemma. J Thoracic Cardiovasc Surg. 2017;154(2):714–27.

    Article  CAS  Google Scholar 

  22. Chiam K, Wang T, Watson DI, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19(7):1208–15.

    Article  PubMed  Google Scholar 

  23. Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107(21):9546–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Sillanpaa MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2012;125(3):419–35.

  25. Jiang D, Huang J, Zhang Y. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Stat Methods Med Res. 2013;22(5):505–18.

    Article  PubMed  Google Scholar 

  26. Meinshausen N, Bühlmann P. Stability selection. J R Statist Soc B. 2010;72(4):417–73.

    Article  Google Scholar 

  27. Blum Murphy M, Xiao L, Patel VR, et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: the association with baseline variables and survival-The University of Texas MD Anderson Cancer Center experience. Cancer. 2017;123(21):4106–13.

    Article  PubMed  Google Scholar 

  28. Duong C, Greenawalt DM, Kowalczyk A, et al. Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer. Ann Surg Oncol. 2007;14(12):3602–9.

    Article  PubMed  Google Scholar 

  29. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Pan X, Wang R, Wang ZX. The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther. 2013;12(7):1153–62.

    Article  PubMed  CAS  Google Scholar 

  31. Riquelme I, Tapia O, Leal P, et al. miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3 K/AKT/mTOR pathway. Cell Oncol (Dordr). 2016;39(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  32. Fukumoto I, Kinoshita T, Hanazawa T, et al. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer. 2014;111(2):386–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu Z, Miao T, Feng T, et al. miR-451a Inhibited cell proliferation and enhanced tamoxifen sensitive in breast cancer via macrophage migration inhibitory factor. Biomed Res Int. 2015;2015:207684.

    PubMed  PubMed Central  Google Scholar 

  34. Su Z, Zhao J, Rong Z, Geng W, Wang Z. MiR-451, a potential prognostic biomarker and tumor suppressor for gastric cancer. Int J Clin Exp Pathol. 2015;8(8):9154–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Gao Z, Liu R, Liao J, et al. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol Med Rep. 2016;14(4):3805–13.

    Article  PubMed  CAS  Google Scholar 

  36. Wen J, Luo K, Liu H, et al. MiRNA expression analysis of pretreatment biopsies predicts the pathological response of esophageal squamous cell carcinomas to neoadjuvant chemoradiotherapy. Ann Surg. 2015;263(5):942–8.

    Article  Google Scholar 

  37. Raychaudhuri M, Bronger H, Buchner T, Kiechle M, Weichert W, Avril S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2017;162(3):511–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Shi L, Chen ZG, Wu LL, et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev. 2014;15(23):10439–44.

    Article  PubMed  Google Scholar 

  39. Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Invest. 2014;94(3):350–58.

    Article  PubMed  CAS  Google Scholar 

  40. Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012;6 Suppl 2:S10.

  41. Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Philadelphia, Pa.). 2012;5(3):492–97.

  42. Sarachana T, Dahiya N, Simhadri VL, et al. Small ncRNA expression-profiling of blood from Hemophilia A patients identifies miR-1246 as a potential regulator of factor 8 gene. PLoS ONE. 2015;10(7):e0132433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shah JS, Soon PS, Marsh DJ. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE. 2016;11(4):e0153200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Peter Devitt for assistance with sample identification, and members of the ACRF Cancer Genomics Facility including Joel Geoghegan, David Lawrence, Andreas Schreiber, and Anna Tsykin. Funding for this study was from NHMRC Project Grant APP595964, and a project grant awarded by Tour de Cure Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian J. Hussey BSc(Hons), PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiam, K., Mayne, G.C., Watson, D.I. et al. Identification of microRNA Biomarkers of Response to Neoadjuvant Chemoradiotherapy in Esophageal Adenocarcinoma Using Next Generation Sequencing. Ann Surg Oncol 25, 2731–2738 (2018). https://doi.org/10.1245/s10434-018-6626-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-018-6626-z

Keywords

Navigation