Skip to main content

Advertisement

Log in

Organoids as a Robust Preclinical Model for Precision Medicine in Colorectal Cancer: A Systematic Review

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Patients with locally advanced or metastatic colorectal cancer (CRC) display heterogeneous responses to standard-of-care therapy. Robust preclinical models of malignancy in the form of patient-derived tumor organoids (PDTOs) have recently come to the fore in tailoring patient care to a personalized medicine level. This study aimed to review the literature systematically regarding PTDOs and gauge their impact on precision medicine in the management of CRC.

Methods

A PRISMA-compliant systematic review of the MEDLINE, EMBASE, Web of Science, and Cochrane Library databases was performed. The results were categorized based on the primary objective of the individual studies as follows: organoid use in predicting effective hyperthermic intraperitoneal chemotherapy (HIPEC), systemic chemotherapy in CRC, or neoadjuvant chemoradiotherapy in rectal cancer.

Results

The literature search found 200 publications, 16 of which met the inclusion criteria. Organoid models of primary and metastatic CRC have been increasingly used to assess clinical responses to standard therapy. Marked heterogeneity exists, matching the responses observed in clinical practice with ex vivo drug and radiation screening. Repeated correlation between organoid and patient sensitivity to forms of HIPEC, systemic chemotherapy, and chemoradiotherapy has been observed.

Conclusion

Patient-derived tumor organoids are the latest tool in predictive translational research. Current organoid-based studies in precision medicine have shown their great potential for predicting the clinical response of patients to CRC therapy. Larger-scale, prospective data are required to fully support this exciting avenue in cancer care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cancer Stat Facts: Colorectal Cancer. National Cancer Institute. https://seer.cancer.gov/statfacts/html/colorect.html. Accessed Feb 6 2020.

  2. Linnekamp JF, Wang X, Medema JP, Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res. 2015;75:245–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wasmuth HH, Rekstad LC, Trano G. The outcome and the frequency of pathological complete response after neoadjuvant radiotherapy in curative resections for advanced rectal cancer: a population-based study. Colorectal Dis. 2016;18:67–72.

    Article  CAS  PubMed  Google Scholar 

  4. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium experience. J Thorac Oncol. 2015;10:768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Letai A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med. 2017;23:1028–35.

    Article  CAS  PubMed  Google Scholar 

  7. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Souza N. Organoid culture. Nat Methods. 2017;14:35–35.

    Article  Google Scholar 

  9. Narasimhan V, Wright JA, Churchill M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin Cancer Res. 2020;26:3662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 2020;26:17-26 e16.

    Article  CAS  PubMed  Google Scholar 

  11. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  12. Ganesh K, Wu C, O’Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 2019;25:1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janakiraman H, Zhu Y, Becker SA, et al. Modeling rectal cancer to advance neoadjuvant precision therapy. Int J Cancer. 2020;147:1405–18.

    Article  CAS  PubMed  Google Scholar 

  14. Kong JCH, Guerra GR, Millen RM, et al. Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precision Oncol. 2018;2:1–15.

    Google Scholar 

  15. Li Y, Wang R, Huang D, et al. A novel human colon signet-ring cell carcinoma organoid line: establishment, characterization, and application. Carcinogenesis. 2020;41:993–1004.

    Article  CAS  PubMed  Google Scholar 

  16. Pasch CA, Favreau PF, Yueh AE, et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res. 2019;25:5376–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pauli C, Hopkins BD, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462–77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang T, Pan W, Zheng H, et al. Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage IV colorectal cancer: a blinded study. Dis Colon Rectum. 2021;64:833–50.

    Article  PubMed  Google Scholar 

  20. Roy P, Canet-Jourdan C, Annereau M, et al. Organoids as preclinical models to improve intraperitoneal chemotherapy effectiveness for colorectal cancer patients with peritoneal metastases: preclinical models to improve HIPEC. Int J Pharm. 2017;531:143–52.

    Article  CAS  PubMed  Google Scholar 

  21. Forsythe SD, Sasikumar S, Moaven O, et al. Personalized identification of optimal HIPEC perfusion protocol in patient-derived tumor organoid platform. Ann Surg Oncol. 2020;27:4950–60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11:513.

    Article  Google Scholar 

  23. Ubink I, van Eden WJ, Snaebjornsson P, et al. Histopathological and molecular classification of colorectal cancer and corresponding peritoneal metastases. Br J Surg. 2018;105:e204–11.

    Article  CAS  PubMed  Google Scholar 

  24. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Votanopoulos KI, Mazzocchi A, Sivakumar H, et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann Surg Oncol. 2019;26:139–47.

    Article  PubMed  Google Scholar 

  26. Ubink I, Bolhaqueiro ACF, Elias SG, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br J Surg. 2019;106:1404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Posselt R, Erlenbach-Wunsch K, Haas M, et al. Spatial distribution of FoxP3+ and CD8+ tumor-infiltrating T cells reflects their functional activity. Oncotarget. 2016;7:60383–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shinto E, Hase K, Hashiguchi Y, et al. CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann Surg Oncol. 2014;21(Suppl 3):S414–21.

    Article  PubMed  Google Scholar 

  29. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  30. McMillin DW, Negri JM, Mitsiades CS. The role of tumor-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013;12:217–28.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015;142:3113–25.

    Article  CAS  PubMed  Google Scholar 

  33. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  34. Weeber F, Van De Wetering M, Hoogstraat M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A. 2015;112:13308–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–62.

    Article  CAS  PubMed  Google Scholar 

  36. Costales-Carrera A, Fernández-Barral A, Bustamante-Madrid P, et al. Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3D organoid assay. Mar Drugs. 2019;17:648.

    Article  CAS  PubMed Central  Google Scholar 

  37. Wu X, Fu C, Yuan X, et al. 3D colorectal cancer organoids as preclinical models for assessment of activity of RAF inhibitor BGB-283. Cancer Res. 2016;76:4260.

    Article  Google Scholar 

  38. Tung KL, Chen KY, Negrete M, et al. Integrated chromatin and transcriptomic profiling of patient-derived colon cancer organoids identifies personalized drug targets to overcome oxaliplatin resistance. Genes Dis. 2021;8(2):203–214.

    Article  CAS  PubMed  Google Scholar 

  39. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.

    Article  PubMed  Google Scholar 

  40. Froysnes IS, Larsen SG, Spasojevic M, Dueland S, Flatmark K. Complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastasis in Norway: prognostic factors and oncologic outcome in a national patient cohort. J Surg Oncol. 2016;114:222–7.

    Article  PubMed  Google Scholar 

  41. Narasimhan V, Britto M, Pham T, et al. Evolution of Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastases: 8-year single-institutional experience. Dis Colon Rectum. 2019;62:1195–203.

    Article  PubMed  Google Scholar 

  42. Hentzen J, Rovers KP, Kuipers H, et al. Impact of synchronous versus metachronous onset of colorectal peritoneal metastases on survival outcomes after cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC): a multicenter, retrospective, observational study. Ann Surg Oncol. 2019;26:2210–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hompes D, D’Hoore A, Wolthuis A, et al. The use of oxaliplatin or mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: a comparative study. J Surg Oncol. 2014;109:527–32.

    Article  CAS  PubMed  Google Scholar 

  44. Levine EA, Votanopoulos KI, Shen P, et al. A multicenter randomized trial to evaluate hematologic toxicities after hyperthermic intraperitoneal chemotherapy with oxaliplatin or mitomycin in patients with appendiceal tumors. J Am Coll Surg. 2018;226:434–43.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prada-Villaverde A, Esquivel J, Lowy AM, et al. The American Society of Peritoneal Surface Malignancies evaluation of HIPEC with mitomycin C versus oxaliplatin in 539 patients with colon cancer undergoing a complete cytoreductive surgery. J Surg Oncol. 2014;110:779–85.

    Article  CAS  PubMed  Google Scholar 

  46. Narasimhan V, Warrier S, Michael M, Ramsay R, Heriot A. Oxaliplatin versus mitomycin C following complete cytoreduction for colorectal peritoneal metastases: a comparative study. J Gastrointest Surg. 2020;24:2104–12.

    Article  PubMed  Google Scholar 

  47. Goere D, Glehen O, Quenet F, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol. 2020;21:1147–54.

    Article  CAS  PubMed  Google Scholar 

  48. Klaver CEL, Wisselink DD, Punt CJA, et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. Lancet Gastroenterol Hepatol. 2019;4:761–70.

    Article  PubMed  Google Scholar 

  49. Quenet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:256–66.

    Article  CAS  PubMed  Google Scholar 

  50. van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378:230–40.

    Article  PubMed  Google Scholar 

  51. Reaper PM, Griffiths MR, Long JM, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7:428–30.

    Article  CAS  PubMed  Google Scholar 

  52. Gargiulo D, Kumar GS, Musser SS, Tomasz M. Structural and function modification of DNA by mitomycin C. Mechanism of the DNA sequence specificity of mitomycins. Nucleic Acids Symp Ser. 1995;34:169–70.

    CAS  Google Scholar 

  53. Toledo L, Neelsen KJ, Lukas J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol Cell. 2017;66:735–49.

    Article  CAS  PubMed  Google Scholar 

  54. Bushati M, Rovers KP, Sommariva A, et al. The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI). Eur J Surg Oncol. 2018;44:1942–8.

    Article  CAS  PubMed  Google Scholar 

  55. Leijte GP, Custers H, Gerretsen J, et al. Increased plasma levels of danger-associated molecular patterns are associated with immune suppression and postoperative infections in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Front Immunol. 2018;9:663.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Witte P, de Witt CA, van de Minkelis JL, et al. Inflammatory response and optimalisation of perioperative fluid administration during hyperthermic intraoperative intraperitoneal chemotherapy surgery. J Gastrointest Oncol. 2019;10:244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016;17:1709–19.

    Article  PubMed  Google Scholar 

  58. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004;240:644–57.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Passot G, You B, Boschetti G, et al. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis. Ann Surg Oncol. 2014;21:2608–14.

    Article  PubMed  Google Scholar 

  60. Passot G, Vaudoyer D, Villeneuve L, et al. What made hyperthermic intraperitoneal chemotherapy an effective curative treatment for peritoneal surface malignancy: a 25-year experience with 1125 procedures. J Surg Oncol. 2016;113:796–803.

    Article  PubMed  Google Scholar 

  61. Wong JSM, Tan GHC, Chia CS, Ong J, Ng WY, Teo MCC. The importance of synchronicity in the management of colorectal peritoneal metastases with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2020;18:10.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ruo L, Tickoo S, Klimstra DS, et al. Long-term prognostic significance of extent of rectal cancer response to preoperative radiation and chemotherapy. Ann Surg. 2002;236:75–81.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hong YS, Kim DY, Lim SB, et al. Preoperative chemoradiation with irinotecan and capecitabine in patients with locally advanced resectable rectal cancer: long-term results of a phase II study. Int J Radiat Oncol Biol Phys. 2011;79:1171–8.

    Article  CAS  PubMed  Google Scholar 

  64. Martin ST, Heneghan HM, Winter DC. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br J Surg. 2012;99:918–28.

    Article  CAS  PubMed  Google Scholar 

  65. Garcia-Aguilar J, Patil S, Kim JK, et al. Preliminary results of the organ preservation of rectal adenocarcinoma (OPRA) trial. J Clin Oncol. 2020;38(15 Suppl):4008–4008.

    Article  Google Scholar 

  66. Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Behrenbruch C, Foroutan M, Lind P, et al. Targeting of TP53-independent cell cycle checkpoints overcomes FOLFOX resistance in metastatic colorectal cancer. BioRxiv. 2021:2021.2002.2004.429849.

  68. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor-immune microenvironment. Cell. 2018;175:1972-88 e1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science. 2019;364:960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yanagisawa K, Konno M, Liu H, et al. A four-dimensional organoid system to visualize cancer cell vascular invasion. Biology Basel. 2020;9:361.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

The National Health and Medical Research Council in Australia (Grant No. APP1156391), provided partial grant support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Flood MRCS.

Ethics declarations

Disclosure

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flood, M., Narasimhan, V., Wilson, K. et al. Organoids as a Robust Preclinical Model for Precision Medicine in Colorectal Cancer: A Systematic Review. Ann Surg Oncol 29, 47–59 (2022). https://doi.org/10.1245/s10434-021-10829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-10829-x

Navigation