Skip to main content

Advertisement

Log in

Breast-Conserving Surgery Margin Guidance Using Micro-Computed Tomography: Challenges When Imaging Radiodense Resection Specimens

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Breast-conserving surgery (BCS) is an integral component of early-stage breast cancer treatment, but costly reexcision procedures are common due to the high prevalence of cancer-positive margins on primary resections. A need exists to develop and evaluate improved methods of margin assessment to detect positive margins intraoperatively.

Methods

A prospective trial was conducted through which micro-computed tomography (micro-CT) with radiological interpretation by three independent readers was evaluated for BCS margin assessment. Results were compared to standard-of-care intraoperative margin assessment (i.e., specimen palpation and radiography [abbreviated SIA]) for detecting cancer-positive margins.

Results

Six hundred margins from 100 patients were analyzed. Twenty-one margins in 14 patients were pathologically positive. On analysis at the specimen-level, SIA yielded a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 42.9%, 76.7%, 23.1%, and 89.2%, respectively. SIA correctly identified six of 14 margin-positive cases with a 23.5% false positive rate (FPR). Micro-CT readers achieved sensitivity, specificity, PPV, and NPV ranges of 35.7–50.0%, 55.8–68.6%, 15.6–15.8%, and 86.8–87.3%, respectively. Micro-CT readers correctly identified five to seven of 14 margin-positive cases with an FPR range of 31.4–44.2%. If micro-CT scanning had been combined with SIA, up to three additional margin-positive specimens would have been identified.

Discussion

Micro-CT identified a similar proportion of margin-positive cases as standard specimen palpation and radiography, but due to difficulty distinguishing between radiodense fibroglandular tissue and cancer, resulted in a higher proportion of false positive margin assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51. https://doi.org/10.3322/caac.21583.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Breast Cancer Facts and Figures 2019–2020. Inc.: American Cancer Society; 2019.

    Google Scholar 

  3. Park CC, Mitsumori M, Nixon A, et al. Outcome at 8 years after breast-conserving surgery and radiation therapy for invasive breast cancer: influence of margin status and systemic therapy on local recurrence. J Clin Oncol. 2000;18(8):1668–75. https://doi.org/10.1200/JCO.2000.18.8.1668.

    Article  CAS  PubMed  Google Scholar 

  4. Schnitt SJ, Abner A, Gelman R, et al. The relationship between microscopic margins of resection and the risk of local recurrence in patients with breast cancer treated with breast-conserving surgery and radiation therapy. Cancer. 1994;74(6):1746–51. https://doi.org/10.1002/1097-0142(19940915)74:6%3c1746::aid-cncr2820740617%3e3.0.co;2-y.

    Article  CAS  PubMed  Google Scholar 

  5. Smitt MC, Nowels KW, Zdeblick MJ, et al. The importance of the lumpectomy surgical margin status in long-term results of breast conservation. Cancer. 1995;76(2):259–67. https://doi.org/10.1002/1097-0142(19950715)76:2%3c259::aid-cncr2820760216%3e3.0.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  6. Smitt MC, Nowels K, Carlson RW, Jeffrey SS. Predictors of reexcision findings and recurrence after breast conservation. Int J Radiat Oncol Biol Phys. 2003;57(4):979–85. https://doi.org/10.1016/s0360-3016(03)00740-5.

    Article  PubMed  Google Scholar 

  7. Leong C, Boyages J, Jayasinghe UW, et al. Effect of margins on ipsilateral breast tumor recurrence after breast conservation therapy for lymph node-negative breast carcinoma. Cancer. 2004;100(9):1823–32. https://doi.org/10.1002/cncr.20153.

    Article  PubMed  Google Scholar 

  8. Cowen D, Houvenaeghel G, Bardou V, et al. Local and distant failures after limited surgery with positive margins and radiotherapy for node-negative breast cancer. Int J Radiat Oncol Biol Phys. 2000;47(2):305–12. https://doi.org/10.1016/s0360-3016(99)00553-2.

    Article  CAS  PubMed  Google Scholar 

  9. Houssami N, Macaskill P, Marinovich ML, Morrow M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol. 2014;21(3):717–30. https://doi.org/10.1245/s10434-014-3480-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moran MS, Schnitt SJ, Giuliano AE, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys. 2014;88(3):553–64. https://doi.org/10.1016/j.ijrobp.2013.11.012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wazer DE, DiPetrillo T, Schmidt-Ullrich R, et al. Factors influencing cosmetic outcome and complication risk after conservative surgery and radiotherapy for early-stage breast carcinoma. J Clin Oncol. 1992;10(3):356–63. https://doi.org/10.1200/JCO.1992.10.3.356.

    Article  CAS  PubMed  Google Scholar 

  12. Heil J, Breitkreuz K, Golatta M, et al. Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study. Ann Surg Oncol. 2012;19(2):541–7. https://doi.org/10.1245/s10434-011-1947-1.

    Article  PubMed  Google Scholar 

  13. Arora D, Hasan S, Male E, Abid R, Ord C, Dauway E. Cost analysis of re-excisions for breast conserving surgery in Central Texas. J Clin Oncol. 2015;33(15_suppl):11534. https://doi.org/10.1200/jco.2015.33.15_suppl.e11534.

    Article  Google Scholar 

  14. Abe SE, Hill JS, Han Y, et al. Margin re-excision and local recurrence in invasive breast cancer: a cost analysis using a decision tree model. J Surg Oncol. 2015;112(4):443–8. https://doi.org/10.1002/jso.23990.

    Article  PubMed  Google Scholar 

  15. Singer L, Brown E, Lanni TJ. Margins in breast conserving surgery: the financial cost & potential savings associated with the new margin guidelines. Breast. 2016;28:1–4. https://doi.org/10.1016/j.breast.2016.04.007.

    Article  PubMed  Google Scholar 

  16. Baliski CR, Pataky RE. Influence of the SSO/ASTRO margin reexcision guidelines on costs associated with breast-conserving surgery. Ann Surg Oncol. 2017;24(3):632–7. https://doi.org/10.1245/s10434-016-5678-1.

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, Elmore LC, Cyr AE, Aft RL, Gillanders WE, Margenthaler JA. Cost analysis of a surgical consensus guideline in breast-conserving surgery. J Am Coll Surg. 2017;225(2):294–301. https://doi.org/10.1016/j.jamcollsurg.2017.03.020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van Den Bruele AB, Jasra B, Smotherman C, Crandall M, Samiian L. Cost-effectiveness of surgeon performed intraoperative specimen ink in breast conservation surgery. J Surg Res. 2018;231:441–7. https://doi.org/10.1016/j.jss.2018.06.045.

    Article  PubMed  Google Scholar 

  19. Kaczmarski K, Wang P, Gilmore R, et al. Surgeon re-excision rates after breast-conserving surgery: a measure of low-value care. J Am Coll Surg. 2019;228(4):504-12.e2. https://doi.org/10.1016/j.jamcollsurg.2018.12.043.

    Article  PubMed  Google Scholar 

  20. Chakedis JM, Chang SB, Tang A, et al. Assessment of surgeon factors associated with margin re-excision after breast-conserving surgery. JAMA Network Open. 2022;5(8):e2228100–e2228100. https://doi.org/10.1001/jamanetworkopen.2022.28100.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Landercasper J, Attai D, Atisha D, et al. Toolbox to reduce lumpectomy reoperations and improve cosmetic outcome in breast cancer patients: the American Society of Breast Surgeons consensus conference. Ann Surg Oncol. 2015;22(10):3174–83. https://doi.org/10.1245/s10434-015-4759-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boughey JC, Keeney GL, Radensky P, Song CP, Habermann EB. Economic implications of widespread expansion of frozen section margin analysis to guide surgical resection in women with breast cancer undergoing breast-conserving surgery. J Oncol Pract. 2016;12(4):e413–22. https://doi.org/10.1200/JOP.2015.005652.

    Article  PubMed  Google Scholar 

  23. Racz JM, Glasgow AE, Keeney GL, et al. Intraoperative pathologic margin analysis and re-excision to minimize reoperation for patients undergoing breast-conserving surgery. Ann Surg Oncol. 2020;27(13):5303–11. https://doi.org/10.1245/s10434-020-08785-z.

    Article  PubMed  Google Scholar 

  24. Olson TP, Harter J, Muñoz A, Mahvi DM, Breslin T. Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence. Ann Surg Oncol. 2007;14(10):2953–60. https://doi.org/10.1245/s10434-007-9437-1.

    Article  CAS  PubMed  Google Scholar 

  25. Valdes EK, Boolbol SK, Cohen JM, Feldman SM. Intra-operative touch preparation cytology; does it have a role in re-excision lumpectomy? Ann Surg Oncol. 2007;14(3):1045–50. https://doi.org/10.1245/s10434-006-9263-x.

    Article  PubMed  Google Scholar 

  26. St John ER, Al-Khudairi R, Ashrafian H, et al. Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: a meta-analysis. Ann Surg. 2017;265(2):300–10. https://doi.org/10.1097/SLA.0000000000001897.

    Article  PubMed  Google Scholar 

  27. Tamanuki T, Namura M, Aoyagi T, Shimizu S, Suwa T, Matsuzaki H. Effect of intraoperative imprint cytology followed by frozen section on margin assessment in breast-conserving surgery. Ann Surg Oncol. 2021;28(3):1338–46. https://doi.org/10.1245/s10434-020-08955-z.

    Article  PubMed  Google Scholar 

  28. Chagpar AB, Killelea BK, Tsangaris TN, et al. A randomized, controlled trial of cavity shave margins in breast cancer. N Engl J Med. 2015;373(6):503–10. https://doi.org/10.1056/NEJMoa1504473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cartagena LC, McGuire K, Zot P, Pillappa R, Idowu M, Robila V. Breast-conserving surgeries with and without cavity shave margins have different re-excision rates and associated overall cost: institutional and patient-driven decisions for its utilization. Clin Breast Cancer. 2021;21(5):e594-601. https://doi.org/10.1016/j.clbc.2021.03.003.

    Article  PubMed  Google Scholar 

  30. Dupont E, Tsangaris T, Garcia-Cantu C, et al. Resection of cavity shave margins in stage 0–III breast cancer patients undergoing breast conserving surgery: a prospective multicenter randomized controlled trial. Ann Surg. 2021;273(5):876–81. https://doi.org/10.1097/SLA.0000000000003449.

    Article  PubMed  Google Scholar 

  31. Bimston DN, Bebb GG, Wagman LD. Is specimen mammography beneficial? Arch Surg. 2000;135(9):1083–6. https://doi.org/10.1001/archsurg.135.9.1083.

    Article  CAS  PubMed  Google Scholar 

  32. Cox CE, Furman B, Stowell N, et al. Radioactive seed localization breast biopsy and lumpectomy: Can specimen radiographs be eliminated? Ann Surg Oncol. 2003;10(9):1039–47. https://doi.org/10.1245/ASO.2003.03.050.

    Article  PubMed  Google Scholar 

  33. Britton PD, Sonoda LI, Yamamoto AK, Koo B, Soh E, Goud A. Breast surgical specimen radiographs: How reliable are they? Eur J Radiol. 2011;79(2):245–9. https://doi.org/10.1016/j.ejrad.2010.02.012.

    Article  CAS  PubMed  Google Scholar 

  34. Pradipta AR, Tanei T, Morimoto K, Shimazu K, Noguchi S, Tanaka K. Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery. Adv Sci (Weinh). 2020;7(9):1901519. https://doi.org/10.1002/advs.201901519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McClatchy DM 3rd, Zuurbier RA, Wells WA, Paulsen KD, Pogue BW. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res Treat. 2018;172(3):587–95. https://doi.org/10.1007/s10549-018-4951-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qiu SQ, Dorrius MD, de Jongh SJ, et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: a feasibility study in breast conserving surgery. Eur J Surg Oncol. 2018;44(11):1708–13. https://doi.org/10.1016/j.ejso.2018.06.022.

    Article  PubMed  Google Scholar 

  37. Janssen NNY, van Seijen M, Loo CE, et al. Feasibility of micro-computed tomography imaging for direct assessment of surgical resection margins during breast-conserving surgery. J Surg Res. 2019;241:160–9. https://doi.org/10.1016/j.jss.2019.03.029.

    Article  PubMed  Google Scholar 

  38. DiCorpo D, Tiwari A, Tang R, et al. The role of Micro-CT in imaging breast cancer specimens. Breast Cancer Res Treat. Published online February 4, 2020. https://doi.org/10.1007/s10549-020-05547-z

  39. Streeter SS, Hunt B, Paulsen KD, Pogue BW. Emerging and future use of intra-surgical volumetric X-ray imaging and adjuvant tools for decision support in breast-conserving surgery. Curr Opin Biomed Eng. 2022;22:100382. https://doi.org/10.1016/j.cobme.2022.100382.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kulkarni SA, Kulkarni K, Schacht D, et al. High-resolution full-3D specimen imaging for lumpectomy margin assessment in breast cancer. Ann Surg Oncol. Published online July 31, 2021. https://doi.org/10.1245/s10434-021-10499-9

  41. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maloney BW, McClatchy DM, Pogue BW, Paulsen KD, Wells WA, Barth RJ. Review of methods for intraoperative margin detection for breast conserving surgery. J Biomed Opt. 2018;23(10):1–19. https://doi.org/10.1117/1.JBO.23.10.100901.

    Article  PubMed  Google Scholar 

  43. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278(2):563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  44. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Comm. 2014;5(1):4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  Google Scholar 

  45. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fornacon-Wood I, Mistry H, Ackermann CJ, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020;30(11):6241–50. https://doi.org/10.1007/s00330-020-06957-9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moriya T, Oda H, Mitarai M, et al. Unsupervised segmentation of micro-CT images of lung cancer specimen using deep generative models. In: D Shen, T Liu, TM Peters, et al., editors. Medical image computing and computer assisted intervention—MICCAI 2019. Springer; 2019. p. 240–8.

    Chapter  Google Scholar 

  48. Schoppe O, Pan C, Coronel J, et al. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nat Comm. 2020;11(1):5626. https://doi.org/10.1038/s41467-020-19449-7.

    Article  CAS  Google Scholar 

  49. Wazir U, Tayeh S, Perry N, Michell M, Malhotra A, Mokbel K. Wireless breast localization using radio-frequency identification tags: the first reported European experience in breast cancer. In Vivo. 2020;34(1):233. https://doi.org/10.21873/invivo.11765.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tayeh S, Muktar S, Heeney J, et al. Reflector-guided localization of non-palpable breast lesions: the first reported European evaluation of the SAVI SCOUT® System. Anticancer Res. 2020;40(7):3915. https://doi.org/10.21873/anticanres.14382.

    Article  PubMed  Google Scholar 

  51. Tayeh S, Gera R, Perry N, Michell M, Malhotra A, Mokbel K. The use of magnetic seeds and radiofrequency identifier tags in breast surgery for non-palpable lesions. Anticancer Res. 2020;40(1):315–21. https://doi.org/10.21873/anticanres.13955.

    Article  PubMed  Google Scholar 

  52. Chakedis JM, Tang A, Kuehner GE, et al. Implementation of intraoperative ultrasound localization for breast-conserving surgery in a large, integrated health care system is feasible and effective. Ann Surg Oncol. 2021;28(10):5648–56. https://doi.org/10.1245/s10434-021-10454-8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: Practical guide for radiologists. RadioGraphics. 2018;38(2):450–61. https://doi.org/10.1148/rg.2018170102.

    Article  PubMed  Google Scholar 

  54. Gholizadeh-Ansari M, Alirezaie J, Babyn P. Deep learning for low-dose CT denoising using perceptual loss and edge detection layer. J Digit Imaging. 2020;33(2):504–15. https://doi.org/10.1007/s10278-019-00274-4.

    Article  PubMed  Google Scholar 

  55. Yu L, Zhang Z, Li X, Xing L. Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans Med Imaging. 2021;40(1):228–38. https://doi.org/10.1109/TMI.2020.3025064.

    Article  PubMed  Google Scholar 

  56. Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res. 2015;17(1):37. https://doi.org/10.1186/s13058-015-0546-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hilleren DJ, Andersson IT, Lindholm K, Linnell FS. Invasive lobular carcinoma: mammographic findings in a 10-year experience. Radiology. 1991;178(1):149–54. https://doi.org/10.1148/radiology.178.1.1984294.

    Article  CAS  PubMed  Google Scholar 

  58. Landercasper J, Borgert AJ, Fayanju OM, et al. Factors associated with reoperation in breast-conserving surgery for cancer: a prospective study of American Society of Breast Surgeon members. Ann Surg Oncol. 2019;26(10):3321–36. https://doi.org/10.1245/s10434-019-07547-w.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank the Dartmouth Health Outpatient Surgery Center nursing and scheduling staff for supporting this work, especially Ms. Melissa A. Ferris. This work was funded by an NIH National Cancer Institute Academic-Industrial Partnership (NIH/NCI R01CA192803). Samuel S. Streeter received funding from a Ruth L. Kirschstein National Research Service Award Individual Predoctoral Fellowship (NIH/NCI F31CA257340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel S. Streeter PhD or Richard J. Barth Jr MD.

Ethics declarations

Disclosures

Samuel S. Streeter, Benjamin W. Maloney, Keith D. Paulsen, and Brian W. Pogue have a patent pending (US Application No.: 17/076,788) related to this study. Richard J. Barth Jr. is Co-Founder and CMO of CairnSurgical, Inc. Keith D. Paulsen is Co-Founder of CairnSurgical, Inc. Brian W. Pogue is President and Co-Founder of DoseOptics, LLC. Authors in their roles in the medical industry did not in any way impact this study. The remaining authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material

Supplementary file 1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streeter, S.S., Zuurbier, R.A., diFlorio-Alexander, R.M. et al. Breast-Conserving Surgery Margin Guidance Using Micro-Computed Tomography: Challenges When Imaging Radiodense Resection Specimens. Ann Surg Oncol 30, 4097–4108 (2023). https://doi.org/10.1245/s10434-023-13364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-13364-z

Navigation