DOI QR코드

DOI QR Code

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation

코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성

  • Kim, S.M. (Div. of Advanced Materials Engineering, Kongju National University) ;
  • Lee, T.H. (Div. of Advanced Materials Engineering, Kongju National University) ;
  • Kang, S.J. (Research Institute of Poscotmc) ;
  • Cho, Y.H. (Div. of Advanced Materials Engineering, Kongju National University) ;
  • Koo, J.M. (Div. of Advanced Materials Engineering, Kongju National University)
  • 김상무 (공주대학교 공과대학 신소재공학부) ;
  • 이태행 (공주대학교 공과대학 신소재공학부) ;
  • 강석조 (포스코 TMC 기술연구소) ;
  • 조영희 (공주대학교 공과대학 신소재공학부) ;
  • 구자명 (공주대학교 공과대학 신소재공학부)
  • Received : 2011.06.02
  • Accepted : 2011.07.08
  • Published : 2011.07.30

Abstract

Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.

Keywords

References

  1. 남기석 : 열처리공학회지, 13(2) (2000) 115.
  2. 이정식 : 열처리공학회지, 19(5) (2006) 280.
  3. 김성완 : 열처리공학회지, 18(6) (2005) 383.
  4. 정봉용 : 주조공학회지, 18(6) (1998) 511.
  5. 최계광 : 대한기계학회 추계학술대회 논문집, 2006(11) (2006) 7.
  6. 문성모 : 기계와 재료 2004년 7월호 55.
  7. Y. Wang, et al. : J. Alloys Compd., 481 (2009) 725. https://doi.org/10.1016/j.jallcom.2009.03.098
  8. Y. Wang and Z. H. Jiang : Applied Surface Science, 255 (2009) 6240. https://doi.org/10.1016/j.apsusc.2009.01.089
  9. Y. Wang, et al. : Current Applied Physics, 9 (2009) 1067. https://doi.org/10.1016/j.cap.2008.12.004
  10. Wei-Chao Gu, et al. : J. Alloys Compd., 430 (2007) 308. https://doi.org/10.1016/j.jallcom.2006.05.030
  11. Y. Wang et al. : Applied Surface Science, 256 (2009) 650. https://doi.org/10.1016/j.apsusc.2009.08.036
  12. Y. Wang et al. : Applied Surface Science, 256 (2010) 1685.
  13. X. Nie, E. I. Meletisa and J. C. Jianga : Surf. Coat. Technol., 149 (2002) 245. https://doi.org/10.1016/S0257-8972(01)01453-0
  14. A. L. Yerohin et al. : Surf. Coat. Technol., 122 (1999) 73. https://doi.org/10.1016/S0257-8972(99)00441-7
  15. A. Guntherschulze and H. Betz : Z. Phys., 91 (1934) 70. https://doi.org/10.1007/BF01340550
  16. A. Guntherschulze and H. Betz : Z. Phys., 8 (1932) 196.
  17. G. P. Wirtz, S. D. Brown and W. M. Kriven : Mater. Manuf. Process., 6 (1991) 87. https://doi.org/10.1080/10426919108934737
  18. W. C. Gu, G. H. Lv, H. Chen and G. L. Chen : J. Alloys Compd., 430 (2007) 308. https://doi.org/10.1016/j.jallcom.2006.05.030
  19. L. S. Saakiyan, A. V. Efremov and A. V. Epelfeld : Prot. Met., 25 (1989) 176.
  20. R. L. Johnson, D. Godfrey and E. E. Bisson : N.A.C.A. Tech. Note 4 (1948) 1578.
  21. A. L. Yerokhin et al. : Surf Coat Technol., 122 (1999) 73. https://doi.org/10.1016/S0257-8972(99)00441-7