ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Note

Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI

[version 1; peer review: 1 approved, 1 approved with reservations]
PUBLISHED 02 Feb 2018
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

Spatial filtering strategies, combined with multivariate decoding analysis of BOLD images, have been used to investigate the nature of the neural signal underlying the discriminability of brain activity patterns evoked by sensory stimulation -- primarily in the visual cortex. Reported evidence indicates that such signals are spatially broadband in nature, and are not primarily comprised of fine-grained activation patterns. However, it is unclear whether this is a general property of the BOLD signal, or whether it is specific to the details of employed analyses and stimuli. Here we performed an analysis of publicly available, high-resolution 7T fMRI on the response BOLD response to musical genres in primary auditory cortex that matches a previously conducted study on decoding visual orientation from V1.  The results show that the pattern of decoding accuracies with respect to different types and levels of spatial filtering is comparable to that obtained from V1, despite considerable differences in the respective cortical circuitry.

Keywords

musical-genre decoding, 7 Tesla fMRI, primary auditory cortex, spatial band-pass filtering

Introduction

We recently reported1 that spatial band-pass filtering of 7 Tesla BOLD fMRI data boosts accuracy of decoding visual orientations from human V1. We observed this result in comparison to data without any dedicated spatial filtering applied, and spatially low-pass filtered data – a typical preprocessing strategy for BOLD fMRI. This effect was present across a range of tested spatial acquisition resolutions, ranging from 0.8 mm to 2 mm isotropic voxel size (Figure 4 in 1). Analysis of individual spatial frequency bands indicated the presence of orientation-related signal in a wide range of spatial frequencies as indicated by above-chance decoding performance for nearly all tested bands. Maximum decoding performance was observed for a band equivalent to a difference-of-Gaussians (DoG) filter of 5–8 mm full width at half maximum (FWHM), indicating that low spatial frequency fMRI components also contribute to noise with respect to orientation discrimination.

This finding raises the question whether this reflects a specific property of early visual cortex and the particular stimuli used in 1, or whether it represents a more general aspect of BOLD fMRI data with implications for data preprocessing of decoding analyses. Here, we investigate this question by applying the identical analysis strategy from 1 to a different public 7 Tesla BOLD fMRI dataset2, with the aim of decoding the musical genres of short audio clips from the early auditory cortex.

Methods

As this study aims to replicate previously reported findings, by employing a previously published analysis strategy on an existing dataset, the full methodological details are not repeated here. Instead the reader is kindly referred to 2, 3 for comprehensive descriptions of the data, and to 1 for details on the analysis strategy and previous findings. Only key information and differences are reported below.

Stimulus and fMRI data

Data were taken from a published dataset2 which were repeatedly analyzed previously4,5, and publicly available from the studyforrest.org project of 20 participants passively listening to five natural, stereo, high-quality music stimuli (6 s duration; 44.1 kHz sampling rate) for each of five different musical genres: 1) Ambient, 2) Roots Country 3) Heavy Metal, 4) 50s Rock’n’Roll, and 5) Symphonic, while fMRI data were recorded in a 7 Tesla Siemens scanner (1.4 mm isotropic voxel size, TR=2 s, matrix size 160×160, 36 slices, 10% interslice gap). fMRI data were scanner-side corrected for spatial distortions6. Stimulation timing and frequency were roughly comparable to 1: 25 vs. 30 trials per run, 10 s vs. 8 s minimum inter-trial stimulus onset asynchrony in a low event-related design, 8 vs. 10 acquisition runs. Subject 20 was excluded from the analysis due to incomplete data.

Region of interest (ROI) localization

Analogous to 1, ROIs were localized separately for each individual brain. ROIs were left and right transversetemporal gyri, as defined by the structural Desikan-Killiany atlas7 from the previously published Freesurfer-based cortex parcellations for all studyforrest.org participants3. This ROI approximates the location of primary auditory cortex, including Broadmann areas 41 and 42 (Figure 1A). The average number of voxels in the ROI across participants was 1412 (std=357).

5e8de82d-1ece-42cd-a2cb-ef177da182da_figure1.gif

Figure 1.

(A) Localization of early auditory cortex (transversetemporal gyrus) as shown in coronal slice of a participant (sub-16). (B) Confusion matrix showing the mean performance of the LinearCSVM classifier across all participants in decoding musical genres from early auditory cortex in spatially unfiltered data. (C) Classification accuracy of decoding musical genres across different types and levels of spatial gaussian filtering. The theoretical chance performance of 20% is shown by the dashed line. This figure has been generated from original analysis of the dataset made publicly available2 under the terms of the Public Domain Dedication and License.

fMRI data analysis

Motion-corrected and distortion-corrected BOLD images from the publicly available dataset2 were analyzed. Images for each participant, available from the dataset as the filename pattern of sub*/BOLD/task002_run*/bold_dico_bold7Tp1_to_subjbold7Tp1.nii.gz were already aligned across acquisition runs. Analogous to 1, BOLD images were masked to the defined bilateral ROI, and voxelwise BOLD response were univariately modelled for each run using the GLM implementation in NiPy [v0.3;8] while accounting for serial correlation with an autoregressive term (AR1). The GLM design matrix included hemodynamic response regressors, one for each genre and its corresponding temporal derivatives, six nuisance regressors for motion (translation and rotation), and polynomial regressors (up to 2nd-order) modeling temporal signal drift as regressors of no-interest. The β weights thus computed for each run were Z-scored per voxel. Multivariate decoding was performed on these Z-scored β weights using linear support vector machines [SVM; PyMVPA’s LinearCSVMC implementation of the LIBSVM classification algorithm;9,10] in a within-subject leave-one-run-out cross-validation of 5-way multi-class classification of musical genres. The hyper-parameter C of the SVM classifier was scaled to the norm of the data. Decoding was performed using the entire bilateral ROI.

In-line with 1, 11, complete BOLD images were spatially filtered prior masking and GLM-modeling, as prior results suggest negligible impact of alternative filtering strategies (see Figure S4 in 1). The magnitude of spatial filtering used is expressed in terms of the size of the Gaussian filter kernel(s) described by their FWHM in mm. The image_smooth() function in the nilearn package12 was used to implement all spatial smoothing procedures. The implementations of Gaussian low-pass (LP), and high-pass (HP) filters, as well as the DoG filters for bandpass (BP) and bandstop (BS) filtering are identical to those of 1 (1 mm FWHM filter size difference).

Results and conclusions

Figure 1 shows the mean accuracy across 19 participants for classifying the genre of music clips from BOLD response patterns of bilateral early auditory cortex. Compared to visual orientation decoding from V11, the mean accuracy of decoding musical genres without dedicated spatial filtering exhibits a substantially higher baseline (for 1.4 mm unfiltered data, mean orientation decoding accuracy was around 35%, whereas mean decoding of musical genres was at around 65%). However, the general pattern of accuracies across all filter sizes and filter types strongly resembles the results of orientation decoding from V1. LP filtering led to a steady decline of performance with increasing filter size, but does not reach chance level even with a 20 mm smoothing kernel. In contrast to LP filtering, HP filtered data yielded superior decoding results for filter sizes of 4 mm and larger. Congruent with 1, BP filtering led to maximum decoding accuracy in the ≈5-8 mm FWHM band. The accuracy achieved on BP filtered data at 6mm FWHM was significantly higher than that without any dedicated spatial filtering (McNemar test with continuity correction13: χ2=33.22, p<10–6). BS filtering led to an approximately constant performance regardless of the base filter size, on the same level as with no dedicated spatial filtering.

In line with Gardumi et al.14, these results suggest that BOLD response patterns informative for decoding musical genre from early auditory cortex are spatially distributed and are represented at different spatial scales. However, despite their broadband nature, relevant information seems to be concentrated in the spatial frequency band corresponding to a ≈5–8 mm DoG filter. Most notably, the present findings show a striking similarity to the visual orientation decoding accuracy patterns in V11.

The origin and spatial scale of signals beneficial for decoding BOLD response patterns are an intensely debated topic in the literature, and various studies have looked at this question in the context of anatomical or topographical structure of visual cortex11,1517.

There are substantial differences between the auditory and visual cortex in terms of anatomy, synaptic physiology, and the circuity of cortical layers and their connections with other cortical areas and subcortical nuclei18. The present results indicate that these differences have little impact on the spatial characteristics of those BOLD signal components that are relevant for decoding visual orientation or genre of music. In summary, these findings call for further investigations of neural and physiological signals underlying decoding models that are common across sensory domains, and individual cortical areas. The increasing availability of diverse open brain imaging data can help to aid the evaluation of generality and validity of explanatory models.

Data and software availability

OpenFMRI.org: High-resolution 7-Tesla fMRI data on the perception of musical genres. Accession number: ds000113b

Article sources for 7-Tesla fMRI data on the perception of musical genres are available: https://doi.org/10.5281/zenodo.1876719

“Forrest Gump” data release source code is available: https://doi.org/10.5281/zenodo.1877020

The codes used in this study for analysis are made openly available: https://doi.org/10.5281/zenodo.115883621

Comments on this article Comments (0)

Version 2
VERSION 2 PUBLISHED 02 Feb 2018
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Sengupta A, Pollmann S and Hanke M. Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI [version 1; peer review: 1 approved, 1 approved with reservations] F1000Research 2018, 7:142 (https://doi.org/10.12688/f1000research.13689.1)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 02 Feb 2018
Views
18
Cite
Reviewer Report 09 Mar 2018
David G. Norris, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands 
Approved
VIEWS 18
This article explores the effect of spatial filtering on the decoding accuracy of BOLD fMRI data. The authors conclude that a spatial bandpass filter corresponding to a difference of Gaussians of 6mm improves the decoding accuracy.

Abstract: ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Norris DG. Reviewer Report For: Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 2018, 7:142 (https://doi.org/10.5256/f1000research.14869.r30542)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 04 Apr 2018
    Ayan Sengupta, Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
    04 Apr 2018
    Author Response
    This article explores the effect of spatial filtering on the decoding accuracy of BOLD fMRI data. The authors conclude that a spatial bandpass filter corresponding to a difference of Gaussians of 6mm improves the decoding accuracy.
     
    Abstract: 'Reported evidence' is clumsy phrasing how about something like 'previous research'. Use of 'matches' is also ambivalent: do you mean the analysis was similar or the results? Please state the main result and not just that it is similar to that obtained for V1.
     
    The required phrases have been changed accordingly. 
     
    Introduction: The term spatial frequency is used frequently, whereas the difference of Gaussians is described in terms of a FWHM. The units of spatial frequency are 1/mm, so if you are describing band pass filters, cut-offs etc in terms of spatial frequency then please convert to the correct units.
     
    The unit of spatial frequency (FWHM) is kept unaltered in order to maintain parity with other previous publications. But a conversion of units to (cycles/mm) and the implementation of DoG filter is explained in Supplementary Figure 5 of Sengupta et al. 2017. It is now explicitly referred to in the manuscript. 
     
    Stimulus and fMRI data: Please give slice orientation of fMRI acquisition. I believe it was axial, but Figure 1 could mislead people into thinking it was coronal.
     
    The words ‘axial slices’ are now mentioned in the description of the acquisition protocol. 
     
    Figure 1 caption: gaussian->Gaussian.
     
    The change is incorporated into the manuscript. 
     
    fMRI data analysis: prior masking -> prior to masking
     
    This change is done.
     
    Results and Conclusions: These are given with little discussion. Why do you think the decoding accuracy is so much higher for music than for V1. Some discussion of existing literature would also be welcome, also of papers which do not reach the same conclusion as the authors (ref 1).
     
    We thank the reviewer for pointing this point in the manuscript. These points are now discussed in the results and conclusion section.
    Competing Interests: No competing interests were disclosed.
COMMENTS ON THIS REPORT
  • Author Response 04 Apr 2018
    Ayan Sengupta, Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
    04 Apr 2018
    Author Response
    This article explores the effect of spatial filtering on the decoding accuracy of BOLD fMRI data. The authors conclude that a spatial bandpass filter corresponding to a difference of Gaussians of 6mm improves the decoding accuracy.
     
    Abstract: 'Reported evidence' is clumsy phrasing how about something like 'previous research'. Use of 'matches' is also ambivalent: do you mean the analysis was similar or the results? Please state the main result and not just that it is similar to that obtained for V1.
     
    The required phrases have been changed accordingly. 
     
    Introduction: The term spatial frequency is used frequently, whereas the difference of Gaussians is described in terms of a FWHM. The units of spatial frequency are 1/mm, so if you are describing band pass filters, cut-offs etc in terms of spatial frequency then please convert to the correct units.
     
    The unit of spatial frequency (FWHM) is kept unaltered in order to maintain parity with other previous publications. But a conversion of units to (cycles/mm) and the implementation of DoG filter is explained in Supplementary Figure 5 of Sengupta et al. 2017. It is now explicitly referred to in the manuscript. 
     
    Stimulus and fMRI data: Please give slice orientation of fMRI acquisition. I believe it was axial, but Figure 1 could mislead people into thinking it was coronal.
     
    The words ‘axial slices’ are now mentioned in the description of the acquisition protocol. 
     
    Figure 1 caption: gaussian->Gaussian.
     
    The change is incorporated into the manuscript. 
     
    fMRI data analysis: prior masking -> prior to masking
     
    This change is done.
     
    Results and Conclusions: These are given with little discussion. Why do you think the decoding accuracy is so much higher for music than for V1. Some discussion of existing literature would also be welcome, also of papers which do not reach the same conclusion as the authors (ref 1).
     
    We thank the reviewer for pointing this point in the manuscript. These points are now discussed in the results and conclusion section.
    Competing Interests: No competing interests were disclosed.
Views
19
Cite
Reviewer Report 08 Feb 2018
Cyril R. Pernet, Neuroimaging Sciences, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK 
Approved with Reservations
VIEWS 19
This is a good note, replicating previous results from vision to audition - and therefore showing that band-pass is an effective strategy, not specific to visual columns. 

Method:
  • You set a GLM to
... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Pernet CR. Reviewer Report For: Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 2018, 7:142 (https://doi.org/10.5256/f1000research.14869.r30541)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 04 Apr 2018
    Ayan Sengupta, Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
    04 Apr 2018
    Author Response
    This is a good note, replicating previous results from vision to audition - and therefore showing that band-pass is an effective strategy, not specific to visual columns. 
     
    Method:
     
        You set a GLM to get beta estimates per genre for each run, and use this (z-scored) for decoding. You mention that you included temporal derivatives, were these ones used in any form? (note you can also correct the hrf amplitude estimates using the temporal derivative https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896880/)
     
    The GLM was performed in NiPy [v0.3;8] while accounting for serial correlation with an autoregressive term (AR1) and hrf modelling was set to be ‘canonical with derivative’. The temporal derivatives were included in the model for a better estimation of the beta parameters. This is now explicitly mentioned in the manuscript with corresponding citation.
        
        You used a within-subject leave-one-run-out cross-validation; as you know I'm sure, Gael showed that LOO tends to be biased (https://arxiv.org/abs/1606.05201). If I understand correctly, that means that the classification is done with 7 betas per class, predict 1 (and rotate). Obviously, that is an issue as K-folds will lead to an even smaller number of beta to use. I don't know if that's addressable here, but worth mentioning the issue (and even better do an alternative sampling scheme if you think it's feasible).
     
    We thank the reviewer for raising this issue with the cross-validation procedure. We agree that the leave-one-out (LOO) cross validation that was performed in this analysis may be biased and repeated random sub-sampling of training set could address the issue. However it has to be noted that the LOO cross validation method was almost exclusively used in all auditory and visual decoding in prior publications. As rightly mentioned by the reviewer, this study is about ‘replicating previous results from vision to audition’ and hence we keep on performing leave-one-out cross validation for making a direct comparison. The caveats of LOO cross validation are now mentioned in the results and conclusion section.
    Competing Interests: No competing interests were disclosed.
COMMENTS ON THIS REPORT
  • Author Response 04 Apr 2018
    Ayan Sengupta, Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
    04 Apr 2018
    Author Response
    This is a good note, replicating previous results from vision to audition - and therefore showing that band-pass is an effective strategy, not specific to visual columns. 
     
    Method:
     
        You set a GLM to get beta estimates per genre for each run, and use this (z-scored) for decoding. You mention that you included temporal derivatives, were these ones used in any form? (note you can also correct the hrf amplitude estimates using the temporal derivative https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896880/)
     
    The GLM was performed in NiPy [v0.3;8] while accounting for serial correlation with an autoregressive term (AR1) and hrf modelling was set to be ‘canonical with derivative’. The temporal derivatives were included in the model for a better estimation of the beta parameters. This is now explicitly mentioned in the manuscript with corresponding citation.
        
        You used a within-subject leave-one-run-out cross-validation; as you know I'm sure, Gael showed that LOO tends to be biased (https://arxiv.org/abs/1606.05201). If I understand correctly, that means that the classification is done with 7 betas per class, predict 1 (and rotate). Obviously, that is an issue as K-folds will lead to an even smaller number of beta to use. I don't know if that's addressable here, but worth mentioning the issue (and even better do an alternative sampling scheme if you think it's feasible).
     
    We thank the reviewer for raising this issue with the cross-validation procedure. We agree that the leave-one-out (LOO) cross validation that was performed in this analysis may be biased and repeated random sub-sampling of training set could address the issue. However it has to be noted that the LOO cross validation method was almost exclusively used in all auditory and visual decoding in prior publications. As rightly mentioned by the reviewer, this study is about ‘replicating previous results from vision to audition’ and hence we keep on performing leave-one-out cross validation for making a direct comparison. The caveats of LOO cross validation are now mentioned in the results and conclusion section.
    Competing Interests: No competing interests were disclosed.

Comments on this article Comments (0)

Version 2
VERSION 2 PUBLISHED 02 Feb 2018
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.