
Vol. 118 (2010) ACTA PHYSICA POLONICA A No. 5

14th Czech and Slovak Conference on Magnetism, Košice, Slovakia, July 6–9, 2010

Ellipsometric Selective Sensitivity to Magnetic Nanostructures
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Recently, we have shown that the approach of depth sensitivity of magneto-optic ellipsometry can be
generalized to selectivity from different materials in nanostructures. We use the condition number as the figure of
merit to quantify the magneto-optic selectivity to two different magnetic contributions in magnetic nanostructure.
The method is demonstrated on nanostructures containing magnetically hard Fe particles in surface layer of soft
FeNbB amorphous ribbon. We separated both magnetic contributions from measurement of hysteresis loops using
magneto-optic Kerr effect in longitudinal configuration. Magneto-optic selectivity is discussed and theoretical
model on the basis of effective medium is compared with experimental data of longitudinal magneto-optic Kerr
effect depending on angle of incidence.
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1. Introduction
Magnetic information included in the magneto-optic

(MO) Kerr effect can be detected either using the Kerr
rotation θK or the Kerr ellipticity εK. Both quantities
are represented by the complex MO Kerr effect ΦK =
θK + iεK. When we have two magnetization contribu-
tions m1, m2 in material, then the total MO response is
in very good approximation the sum of the contributions
from particular magnetizations Φtot = Φ1 +Φ2 [1]. The
measured polar MO Kerr rotation θtot and ellipticity εtot
can be expressed as weight sum of normalized particular
magnetizations m1 = M1/MS1, m2 = M2/MS2, where
MS1,2 are corresponding saturated magnetizations [2]:

Φtot =

[
θtot

εtot

]
=

[
a1 a2

b1 b2

][
m1

m2

]
= AM . (1)

If we determine the elements of the matrix A, we can
obtain both magnetic contributions using the matrix in-
version M = A−1Φ [2].

2. Theory
When we measure MO effect Φ with the tolerance ∆Φ,

then nominal error of magnetic contribution is propor-
tional to the condition number κ(A) [3]:

‖∆M‖
‖M‖ ≤ κ(A)

‖∆Φ‖
‖Φ‖ , (2)

κ(A) = ‖A−1‖‖A‖, (3)
where ‖A‖ is the norm of the matrix A. In our calcula-
tions we used the spectral norm [3].
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To express the condition number analytically we ex-
press Φ1 and Φ2 as Φ1 = |Φ1| exp(iα0) and Φ2 =
|Φ2| exp[i(α0 + ∆α)]. This we can visualize in the θε
plane in Fig. 1a [4]. Then we can write matrix A:

A = |Φ1|
(

cosα0 k cos(α0 + ∆α)
sin α0 k sin(α0 + ∆α)

)
. (4)

Then the condition number is only function of angle ∆α
between vectors Φ1 and Φ2 and the ratio k = |Φ2|/|Φ1|
of absolute values of vectors |Φ2|, |Φ1|

κ(A) =
1

2k| sin∆α|

×
(
1 + k2 +

√
(k2 − 1)2 + 4k2 cos2 ∆α

)
. (5)

Figure 1b shows dependence of the condition number
κ(A) from Eq. (5) on the parameters ∆α and k. We
see that we can obtain reasonable small condition num-
ber if parameter k is not too different from 1 and vectors
Φ1 and Φ2 are not collinear.

Then we can separate magnetization contributions of
one material from two different depths [5, 6] but also
magnetization contributions from two different materials
[2, 7, 8].

3. Experimental results
We can demonstrate this e.g. for magnetically hard Fe

particles in surface layer of soft FeNbB amorphous rib-
bons [9]. On wheel side of Fe80.5Nb6.9B12.6 ribbon MO
hysteresis loops in longitudinal configuration were mea-
sured [9, 10]. Similar loops measured at different angle of
incidence (65◦) are presented in Fig. 2a. The loops con-
firm that the near-surface region is inhomogeneous and
contains contribution of different phases [10]. Transmis-
sion electron microscopy (TEM) measurements show the
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Fig. 1. (a) MO contributions Φ1, Φ2 to the total MO
effect Φtot displayed in θ, ε plane. (b) Dependence of
condition number κ(A) of 2 × 2 matrix A of two col-
umn vectors Φ1, Φ2 on angle ∆α between the vectors
and parameter k corresponding to the ratio of absolute
values |Φ1|, |Φ2|. See Eq. (5).

α-Fe crystallites with average size of grains about 100 nm
situated near the wheel surface, Fig. 2b. By rotating of
vector Φtot with respect to the θ and ε axes we separated
two different phases showed in Fig. 2c,d from measured
loops in Fig. 2a. The corresponding matrix A and the
condition number κ(A) are

Aexp =

(
−0.26 −0.28
−0.12 0.19

)
, κ(Aexp) = 1.8 . (6)

We suppose that the hard magnetic phase corresponds
to the α-Fe crystallites and the soft one corresponds to
the amorphous FeNbB. The small value of the condition
number κ(Aexp) shows that the magnetic contributions
are well separable.

Theoretically we describe the structure as spherical Fe
particles with different size in amorphous bulk FeNbB.
We calculated effective permittivity tensor using the
Maxwell–Garnett approximation for anisotropic particles
inserted in anisotropic medium [11]. For Fe particles we
used optical and MO constants from [12, 13] and for bulk
FeNbB the optical and MO constants from [9]. We sup-
posed that the Fe volume fraction f decreases exponen-
tially with depth in amorphous material according to the
function

f = f0 exp(−d/∆d) . (7)
On the surface we supposed an oxidation layer with
refractive index n = 2.1 (the refractive index of
Nb2O5 [14]).

Using Yeh’s matrix formalism [15], we calculated con-
tribution Φtot and separately both magnetic contribu-
tions Φ1 and Φ2 to the longitudinal MO Kerr effect at
wavelength of incident light 670 nm for angle of inci-
dence varying from 0◦ to 90◦. We fitted parameters f0,
∆d and thickness of surface oxidation layer ts to the ex-

Fig. 2. (a) Sketch of the MO longitudinal Kerr rota-
tion θKs and ellipticity εKs measured on wheel side of
FeNbB ribbon for incident s-polarized wave at wave-
length 670 nm and angle of incidence 65◦. (b) Trans-
mission electron microscopy on wheel side of the FeNbB
ribbon. Dark and light areas show the crystallic α-Fe
phase. (c), (d) Hysteresis loops of the crystalline Fe
phase and the amorphous FeNbB phase separated from
data in (a), respectively.

Fig. 3. Calculated dependence of longitudinal Kerr ef-
fect: (a) rotation, (b) ellipticity on angle of incidence
for spherical Fe particles in homogeneous FeNbB mate-
rial. The wavelength of incident light is 670 nm. The
contributions from Fe and from FeNbB are also shown
separately. The model is compared with experimental
data from [9] (square dots).

perimental data from [9] (Fig. 3). We obtained f0 = 0.8,
∆d = 7 nm and ts = 7 nm. Further we confirmed that
Φtot = Φ1 + Φ2. For incident s-polarization wave at
angle of incidence 65◦ we calculated from Φ1 and Φ2 ac-
cording to (1) matrix
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Aeff =

(
−0.25 −0.37
−0.23 0.004

)
, κ(Aeff) = 2.5 .

The matrix Aeff and corresponding condition number
κ(Aeff) obtained from model corresponds reasonably
good with Aexp and κ(Aexp) (6) obtained from the ex-
periment. The difference occurs because our model does
not involve relatively big surface roughness, complicated
shape of Fe crystallites and the fact that the structure of
amorphous FeNbB bulk inside the ribbon can differ from
the material filling space among Fe crystallites. Never-
theless, reasonably good agreement shows us that both
contributions to the magnetization (from Fe particles and
from amorphous FeNbB) are well separable and that we
can use introduced model to describe the structure of
wheel side of FeNbB ribbons.
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