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In this study, the quadrupole moments of the 166−180Hf, 180−186W and 152−168Sm isotopic chains have been
calculated by using the Woods-Saxon mean field potential in the framework of the superfluid model of the atomic
nucleus. Our calculation showed that the deformation parameter mainly used in literature overestimates the actual
values of deformation parameters β2 by 10% for the well-deformed rare-earth nuclei. Besides, the contribution of
the hexadecapole deformation to all quadrupole moments in question is smaller than 0.01 barn. The results showed
that the theoretical values of the quadrupole moments are in good agreement with the previous theoretical works
which have been done only for Sm isotopes and the corresponding experimental data for nuclei in question. The best
theoretical value for quadrupole moment has been reached for the 152Sm isotope.
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1. Introduction

A comparison of the theoretical values of the
quadrupole moments which are a significant quantity for
deformed nuclei, with experimental data gives a chance to
test the nuclear models. In fact, the quadrupole moment
of a nucleus can be calculated by the microscopic [1] and
phenomenological models [2]. The essential lack of the
phenomenological models could not give sufficient infor-
mation about the structure of the nuclear levels. On the
other hand, the microscopic models which take into ac-
count the interaction between the nucleons in the nucleus
is a more useful approximation to investigate the struc-
ture of the atomic nucleus. It is well known that the
existence of the deformed nuclei have been recognized
because of the fact that the experimental values of the
quadrupole moments are several times higher than the
values proposed by the single particle shell model [2].

Among the microscopic models, the most useful one,
is certainly the BCS model which is based on the
shell model [1]. A systematical calculation for the well
deformed nuclei in the rare- earth region using the
anisotropic Nilsson potential has been performed in [3, 4].
Recently, the discovery of the new deformed regions
which are far from the stability region of the elements,
has attracted attention on the neutron rich and the neu-
tron deficient nuclei, i.e., exotic nuclei [5, 6]. There-
fore, for the research on the structure, half-life and the
other properties of these nuclei, correct determination of
the mean field parameters is very important. However,
neutron-rich nuclei in question have not been studied,
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satisfactorily. The most dependable calculations have
been done for samarium isotopes in [7, 8]. Here, there
are two aims. The first one is to present and to com-
pare the results obtained by using the well-known super-
fluid model for 166−180Hf, 180−186W and 152−168Sm with
the experimental data and the previous studies (available
only for Sm isotopes). The second one is to determine the
β2 deformation parameters by comparing the theoretical
values of the quadrupole moments with the experimental
data.

2. Method

It is well known that the shape of the axially sym-
metric deformed nucleus is described by the deformation
parameter (β2) directly connected to the quadrupole mo-
ment (Q0) which represents the homogeneous charge dis-
tribution [9, 10].

Q0 =
3ZR2

0√
5π

(β2 + 0.36β2
2 + . . .), (1)

where Z is the atomic number, R0 = 1.2A1/3 fm and
β2 < 1. The quadrupole deformed nuclei are labelled as
prolate (Q0 > 0) or oblate (Q0 < 0). Generally in litera-
ture during the determination of the experimental value
of β2 deformation parameter in the first approximation
is assumed as β2

2 � 1 and by neglecting the β2
2 term in

the Eq. (1),

β
(u)
2 =

Q0

√
5π

3ZR2
0

(2)

is obtained [10].
The relationship between deformation parameters

(β(u)
2 ) defined using approximation in Eq. (1) and the

mean-field deformation parameter (δ) used in the nu-
merical calculations of eigenvalue problem differ by less
than 30% is given by
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As known, there is a simple relation between the
quadrupole moments (Q0) of the axial symmetric de-
formed nuclei and B(E2) values which represents the
transition probability from the ground state to the lowest
excited state with Kπ = 2+ given by

Q0 =

√
16π

5

√
B(E2)

e2
, (4)

where e denotes the electric charge of the proton [2].
Here, B(E2) are basic experimental quantities that do
not depend on nuclear models. However, for the well de-
formed nuclei, the values of the deformation parameter
by using Eq. (2) do not agree with the values obtained
by the experimental methods.

In this work using the Eq. (1) without using any ap-
proximation for the deformation parameter β2, the for-
mula that we obtained is given as,

β2 =
−1 +

√
1 + 1.44β

(u)
2

0.72
. (5)

Now the relation between the β2 and mean-field defor-
mation parameter δ slightly differs from Eq. (3) mainly
used in literature and has a form

δ =

√
45

16π
β2 −

45

32π
β2
2 + . . . . (6)

According to the superfluid model, the electric
quadrupole moment of the nucleus is equal to the sum
of the quadrupole moments of neutron and proton sys-
tems,

Q0 = Qn0 +Qp0, (7)
where,

Qn0 = 2
∑
ν

〈ν| r2Y20 |〉 v2ν ;

Qp0 = 2
∑
ν

〈µ| r2Y20 |〉 v2µ (8)

and |〉 (|〉) and ν (µ) denote the wave function of the neu-
tron (proton) and quantum number set in the deformed
mean field potential, respectively. In addition, the multi-
plying factor 2 before the sums is due to the z-component
of the total angular momentum in the direction of sym-
metry axis that has twofold degeneracy. According to
the superfluid model [1], the occupation probability of
the particle in a level is given by

v2s =
1

2
(1− Es − λ

εs
), (9)

where εs denotes the quasi-particle energy and Es rep-
resents the mean field energy of any nucleon that has a
quantum number set s. Besides, ∆ and λ are the gap
and the chemical potential parameters in the superfluid
model, respectively. These parameters are calculated for
the neutron and proton systems separately, using the fun-
damental formula of the superfluid model as follows,

2

G
=

∑
s

1

εs
, N = 2

∑
s

v2s . (10)

3. Numerical calculations and discussions

In this study, the single particle energies have been cal-
culated using deformed Woods-Saxon potential [9, 10].
For the neutrons and the protons all energy levels occu-
pied in the N= 2−7 shells from the bottom up to the
6 MeV in the nuclear potential well have been taken into
account. For nucleus that has small deformation, Equa-
tion (2) does not influence the results anymore. However,
for the well deformed nuclei, the values of the deforma-
tion parameter by using Eq. (2) do not agree with the
values obtained by the experimental methods. There-
fore, we calculated deformation parameter (β2) by using
Eq. (5) and compared these results with the results ob-
tained from Eq. (2). In Fig. 1, the calculated values using
Eq. (2) and Eq. (5) for Hf and W isotopic chains have
been given as a function of mass number A.

Fig. 1. The quadrupole deformation parameters for
the 166−180Hf and 180−186W isotopes. Dashed and
solid line denote the values obtained using Eq. (2) and
Eq. (5), respectively.

We observed that Eq. (2) which is obtained by ne-
glegting β2

2 term gives a 10% bigger than the actual val-
ues. These results prove the significance of Eq. (5) for
the experimental determination of the deformation pa-
rameter. Such a picture is peculiar for the investigated
Sm isotopes.

Studies on the deformed nuclei via Coulomb excita-
tion experiments showed that there exists also hexade-
capole deformation in these nuclei [11, 12 and references
therein]. The parameter β4, which represents hexade-
capole deformation, is about ten times smaller than the
values of the parameter β2 for any nucleus. It should
be stated that for the nuclei at the beginning of the
150 ≤ A ≤ 190 region, the parameter β4 is a positive
quantity but β4 decrease with increasing A. Finally, for
the last nuclei at the end of this region, it takes negative
values. [1, p. 264].
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In Table I, using the experimental data [7], the calcu-
lated values of the parameter β4 have been listed only for
Hf isotopes as an example. Such pictures are also pecu-
liar for W and Sm isotopes. In this table, the quadrupole
moments for β4 = 0 have been given for comparison.
As can be seen, taking the hexadecapole deformation into
account is not much effective on the results. The con-
tribution of the hexadecapole deformation to the total
deformation is not over 1% for all nuclei under study.
The parameters βth2 and δth in Table I have been ob-
tained theoretically by fitting the quadrupole moments
to the experimental data [13].

TABLE I

The calculated values of the quadrupole moments
for the 166−180Hf isotopes by taking into account β4.

Nucleus βth
2 δth

Qth [barn]
β4 = −0.02

Qth [barn]
β4 = 0

166
72 Hf 0.0957 0.0857 5.868 5.89
168
72 Hf 0.2479 0.2349 6.542 6.561
170
72 Hf 0.3603 0.3554 7.032 7.072
172
72 Hf 0.2445 0.2317 6.622 6.641
174
72 Hf 0.3062 0.2968 6.92 6.95
176
72 Hf 0.3777 0.3754 7.235 7.28
178
72 Hf 0.295 0.2852 6.936 6.961
180
72 Hf 0.2631 0.2516 6.813 6.836

Using the Eq. (5) for Hf and W isotopic chains, the-
oretical values of quadrupole moments as a function of
the mass number A, have been shown in Fig. 2. In these
figures the experimental values were taken from [13] for
comparison.

As can be seen from Table I and Fig. 2, the theoretical
results agree with the experimental ones. The reason of
the disagreement in 166Hf and 186W is that our assump-
tion for the calculations of the quadrupole moment is not
valid for these nuclei. These results show that the lowest
excited 2+ state is not related with the rotation of the
nucleus in the nuclei near the closed shells.

The results of quadrupole moments for 152−168Sm iso-
topes have been presented in Table II. Besides, the pre-
dictions in [7, 8], and the experimental values [13] (they
are available only for 152−154Sm isotopes) have been pre-
sented in Table II.

As can be seen from Table II, for the 152Sm, the present
work gives better agreement with the corresponding ex-
perimental data [13] than the other theoretical calcula-
tions [7, 8]. However, for 154Sm, the results of [8], is the
best one for experiment. In [8], the authors used FBCS
method and stated that except for the first three nuclei
their results systematically were lower than those of [7].
For this reason, they claimed that discrepancy might be
attributed to the particle number fluctuation in the BCS
theory which had not been taken into account in [8]. Ac-
cording to them, the well known shortcoming of the BCS
theory could be emphasized in the neutron rich nuclei.
However, although any projection method that conserves

Fig. 2. Variation of the experimental and the theo-
retical values of the electric quadrupole moments ver-
sus atomic mass number A for the 166−180Hf and
180−186W isotopes. Where • and ♦ denote the theoret-
ical and the experimental values, respectively. The ex-
perimental values are given in the experimental error
limits.

TABLE II

Quadrupole moments (in barn) of the even-even 152−168Sm
nuclei. The predictions of the present work are compared
with the other theoretical studies [7, 8] and the experimen-
tal data [13] available only for 152−154Sm isotopes.

Nucleus β2 δ2
Q

(this work)
Q [7] Q [8] Qexp. [13]

152
62 Sm 0.243 0.203 5.91 5.69 5.96 5.88
154
62 Sm 0.270 0.222 6.11 6.22 6.56 6.62
156
62 Sm 0.279 0.229 6.22 6.42 6.55 –
158
62 Sm 0.279 0.229 6.25 6.62 6.40 –
160
62 Sm 0.290 0.236 6.33 6.81 5.96 –
162
62 Sm 0.300 0.243 6.44 6.96 6.09 –
164
62 Sm 0.302 0.245 6.46 7.18 6.02 –
166
62 Sm 0.294 0.239 6.37 7.30 6.49 –
168
62 Sm 0.284 0.232 6.33 7.23 6.61 –

particle number was not used in the present work, as seen
in Table II, except 152Sm isotope the values that we ob-
tain for quadrupole moments is lower than those of [7]
and except the 160,162,164Sm isotopes are lower than those
of [8]. As is well known, the mathematical approximation
used in the description of pairing correlations lead to the
non conservation of particle number. To counteract this
effect, the particle number is conserved only in average in
the BCS model introducing Lagrange parameters called
‘chemical potentials’.
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4. Conclusion

We conclude that in the framework of the microscopic
model, together with permanent deformed nuclei, also
for the nuclei in the extremities of the regions in ques-
tion quadrupole moment can be calculated successfully.
The fitted values of the deformation parameter are in
good agreement with the experimental values that ob-
tained from the electric quadrupole transitions.

We also conclude that it seems a weak argument that
the present discrepancy among the predictions of the
methods might be attributed to the particle number
fluctuations in the BCS theory. It is possible to ob-
tain acceptable results for the electric quadrupole mo-
ments of the natural and also the exotic nuclei using the
BCS theory.
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