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1. Introduction

The Schrödinger equation and its solutions are still a
challenging subject in physics. Just as many other areas
of science, where we have to solve a differential equation
to obtain the required information, we have to first solve
the building block of nonrelativistic quantum mechan-
ics. In doing so, we have to use numerical and analytical
techniques depending on the structure of the equation.
In particular, the analytical approaches are attractive as
they provide a deeper and more touchable insight into
the physics of the problem [1–6]. Cooper et al. reviewed
the theoretical formulation of supersymmetry quantum
mechanics and discussed its applications in dealing with
both relativistic and nonrelativistic equations of quan-
tum mechanics [7]. Ciftci et al. used the asymptotic
iteration method for finding solutions of the Schrödinger
equation [8]. Slater considered a simplification of the
Hartree–Fock method to analyze the related problems [9].
Stevenson applied the optimized perturbation theory to
the field [10]. Dong et al. proposed the quasi-exact so-
lutions of the Schrödinger equation via the ansatz tech-
nique which is a quasi-exact approach [11]. Another fre-
quently used tool is the Nikiforov–Uvarov (NU) technique
which transforms classes of equations of mathematical
physics into hypergeometric form.

A reason of recent renewed interests in the wave equa-
tions of quantum mechanics is the implications of funda-
mental theories such as string theory. To be more pre-
cise, the noncommutative (NC) formulations of quantum
mechanics and the proposition of the so-called minimal
length, has motivated many recent studies on the quan-
tum equations. The NC formulation, which is the focus
of the present work, originates from fundamental theories
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such as string theory and quantum gravity which are still,
and supposed to be for the coming years, open to debate.
Seiberg and Witten extend earlier ideas about the ap-
pearance of NC geometry in string theory with a nonzero
B-field [12]. Seiberg et al. studied strings in background
electric fields with space-time non-commutativity [13].
Douglas and Nekrasov reviewed the generalization of field
theory to NC space-time [14]. Connes et al. studied the
toroidal compactification of matrix theory by using ideas
coming from the results of NC geometry [15]. Pasquier
introduced the ideas of NC geometry through the exam-
ple of the quantum Hall effect [16].

Hassanabadi et al. considered the Klein–Gordon oscil-
lator in the NC space (NCS) and NC phase-space with an
extra pseudoharmonic potential in presence and absence
magnetic field [17]. Santos et al. obtained the thermody-
namical properties of graphene in NC phase-space [18].
Until now, various concepts of quantum mechanics have
been studied within this framework. This list includes
quantum Hall effect, graphene system, etc. [16, 18]. Also,
Scholtz et al. studied the formulation, interpretation and
application of non-commutative quantum mechanics [19].
Scholtz et al. obtained the spectrum of the NC spherical
well and discussed the infinite and finite cases in two di-
mensions [20]. Mandal and Rai showed the behavior of
the(2 + 1)-dimensional NC Dirac oscillator in an exter-
nal magnetic field [21]. Scholtz and Govaerts calculated
the thermodynamic properties of a NC fermion gas [22].
Gamboa et al. worked on the NC quantum mechanics in
two-dimensional central field and found a smooth limit
for small values of θ and for non-polynomial ones [23]. In
our work, we are going to consider the NC Schrödinger
equation with a harmonic potential which is of both re-
search and pedagogical interests. Having calculated the
solutions of the problem in an exact analytical manner,
we next intend to calculate the statistical properties of
the system including the partition function, internal en-
ergy, chemical potential and entropy.

(3)
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2. The noncommutative space

We first review the basic formulae of NC algebra. In
the commutative quantum mechanics, the position and
momentum operators satisfy the Heisenberg algebra [24]:

[xi, xj ] = [pi, pj ] = 0, [xi, pj ] = iδij , (1)
At very tiny scales such as the string scale, the commu-
tation relations ought to be modified and in the so-called
NCS, the commutation relations appear in the form

[xi, xj ] = iθij , [pi, pj ] = 0, [xi, pj ] = iδij , (2)
where θεij , with εij being an anti-symmetric tensor and
the NC parameter θ is assumed to be extremely small.
To map the ordinary quantum mechanics to its NC ver-
sion, we apply the shifts

x→ x− θ

2
py, y → p+

θ

2
px,

px → px +
θ

2
y, py → py −

θ

2
x, (3)

which are called the Bopp-shift in the jargon. In the NC
formulation, for arbitrary f and g functions, we have to
define the Moyal product

(f ∗ g)(x) = exp
(
iθij∂xi∂xj

)
f
(
xi
)
g
(
xj
)

(4)
In this case, the Moyal–Weyl product can be replaced by
a Bopp shift [25].

3. Schrödinger equation in the presence of
magnetic field in commutative space

Let us first recall that to analyze a charged particle
in a magnetic field, the momentum is transformed as
p →

(
p− e

c
A
)
. The Hamiltonian in the presence of

magnetic field in commutative space with the oscillatory
interaction term is

H(c) =
1

2M

[ (
px −

e

c
Ax

)
î+
(
py −

e

c
Ay

)
ĵ
]2

+
M

2
ω2
(
x2 + y2

)
=

1

2M

[
p2x +

e2

c2
A2
x −

e

c
pxAx

− e
c
Axpx + p2y +

e2

c2
A2
y

− e
c
pyAy −

e

c
Aypy

]
+

M

2
ω2
(
x2 + y2

)
, (5)

A =
(
−1

2
By,

1

2
Bx, 0

)
. (6)

Bearing in mind Lz = xpy − ypx, Eq. (5) appears as[ (
p2x+p

2
y

)
+
(
e2B2

4c2
+M2ω2

) (
x2+y2

)
− eB

c
Lz

]
ψ =

2ME(c)
n,mψ, (7)

or [
d2

dr2
+

1

r

d

dr
− m2

r2
+
(
e2B2

4c2
+M2ω2

)
r2 − eB

c
Lz

]
ψ =

2ME(c)
n,mψ. (8)

Using the transformation r2 = s, Eq. (8) comes into the
form{

d2

ds2
+

1

s

d

ds
+

1

s2

[
− m2

4
+
(
e2B2

16c2
+

M2

4
ω2
)
s2

−
(
eB

4c
Lz +

ME
(c)
n,m

2

)
s
]}
ψ = 0. (9)

The latter can be simply solved by the powerful NU
method with the required parameters being [26]:

α1 = 1, α2 = α3 = 0, α4 = α5 = 0,

ξ1 = − e
2B2

16c2
− M2

4
ω2, ξ2 = − eB

4c
Lz −

ME
(c)
n,m

2
,

ξ3 =
1

4
m2, α8 = ξ3 =

1

4
m2, (10)

and

α6 = − e
2B2

16c2
− M2

4
ω2, α7 =

eB

4c
Lz +

ME
(c)
n,m

2
,

α9 = − e
2B2

16c2
− M2

4
ω2. (11)

Using the NU technique, and substituting
√
−α9 as Q,

the energy relation for Lz = m~ and ~ = 1 is

−(2n+ 1)Q+
eB

4c
Lz +

ME
(c)
n,m

2
−mQ = 0, (12)

which gives the explicit form of the energy as

E(c)
n,m = (2n+ 1)

2

M
Q+

4m

M
Q− 2eB

4Mc
m. (13)

The latter, in the case of m = 0, yields

E(c)
n =

(
n+

1

2

)
4Q

M
. (14)

Recalling the energy relation of the ordinary nonrelativis-
tic harmonic oscillator, we find the corresponding fre-
quency as

ω(c) =
4

M

√
e2B2

16c2
+

M2

4
ω2.

4. Statistical properties in commutative space

The partition function of the system in the CS is

Z
(c)
1 =

∞∑
n=0

e−β(n+
1
2 )ω

(c)

, (15)

which gives

Z(c) =
(
Z

(c)
1

)N
=
[
2 sinh

(
4β

M
Q
)]−N

. (16)

where β =
1

kBT
and kB is the Boltzmann constant. Hav-

ing calculated the partition function, we now calculate
other statistical properties of the system. The internal
energy of the system is

U (c) = − ∂

∂β
lnZ(c) = − ∂

∂β
ln
(
e
βω(c)

2 −e−
βω(c)

2

)−N
=

2N

M
Q coth

(
2β

M
Q
)
. (17)

In the extreme limit where T →∞, from coth(y) ∼=
1

y
=

2

βω(c)
and Eq. (17) reduces to the well-known rela-

tion
U (c) = NkBT. (18)

The Helmholtz free energy is found to be

A(c) = −kBT lnZ(c) = NkBT ln
(
2 sinh

(
2β

M
Q
))

.(19)

The chemical potential of the system is
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µ(c) =

(
∂A(c)

∂N

)
V,T

= kBT ln
(
2 sinh

(
2β

M
Q
))

. (20)

and the entropy takes the form

S(c) = −
(
∂A(c)

∂T

)
V,N

= −NkB
[
ln
(
2 sinh

(
2β

M
Q
))

−
(
2β

M
Q
)
coth

(
2β

M
Q
) ]
. (21)

5. Schrödinger equation in the presence
of magnetic field in noncommutative space

To consider the problem in the NCS, we consider the
transformations

x→ x− θ

2
py, y → p+

θ

2
px, px → px +

θ

2
y,

py → py −
θ

2
x (22)

and the commutation relation between the space and mo-
mentum is

[xi, pj ] = iδij (23)
Summing up the above relations, we have

H(NC) =
1

2M

[(
px −

e

c
Ax

)
î+
(
py −

e

c
Ay

)
ĵ
]2

+
M

2
ω2
(
x2 + y2

)
=

1

2M

[
p2x +

θ2

4
y2 + θpxy

+
e2B2

4c2

(
y2 +

θ2

4
p2x + θypx

)
+

eB

2c

(
y +

θ

2
px

)
×
(
px +

θ

2
y
)
+

eB

2c

(
px +

θ

2
y
)(

y +
θ

2
px

)
+p2y +

θ2

4
x2 − θpyx+

e2B2

4c2

(
x2 +

θ2

4
p2y − θxpy

)
− eB

2c

(
py −

θ

2
x
)(

x− θ

2
py

)
− eB

2c

(
x− θ

2
py

)(
py −

θ

2
x
) ]

+
Mω2

2

(
x2 + y2 +

θ2

4

(
p2x + p2y

)
+ θ (ypx − xpy)

)
,

(24)
or [(

1 +
e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)
p2

+
(
θ2

4
+

e2B2

4c2
+

eBθ

2c
+M2ω2

)
r2

−
(
2θ +

e2B2θ

4c2
+

eB

c
+

eBθ2

4c

)
Lz

−2ME(NC)
n,m

]
ψ = 0. (25)

Using

α = 1 +
e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2,

η =
θ2

4
+

e2B2

4c2
+

eBθ

2c
+M2ω2,

γ = 2θ +
e2B2θ

4c2
+

eB

c
+

eBθ2

4c
, (26)

Eq. (25) takes the form

αp2 + νr2 − γLz − 2ME(NC)
n,m = 0, (27)

or
p2 +

ν

α
r2 − γ

α
Lz −

2

α
ME(NC)

n,m = 0, (28)
which corresponds to the differential equation

d2

ds2
+

d

sds
(29)

+
[
− m2

4
+

ηs2

4α
−
(
γ

4α
Lz −

2ME
(NC)
n,m

4α

)
s
]/
s2 = 0,

possessing the NU parameters
α1 = 1, α2 = α3 = 0, α4 = 0, α5 = 0,

ξ1 = − η

4α
, ξ2 = − γ

4α
Lz −

ME
(NC)
n,m

2α
, ξ3 =

m2

4
,

α6 = ξ1 = − η

4α
α7 = −ξ2 =

γ

4α
Lz +

ME
(NC)
n,m

2α
,

α8 = ξ3 =
m2

4
, α9 = α6 = − η

4α
. (30)

Therefore, the energy is

E(NC)
n,m =

2α

M
(2n+ 1)

√
η

4α
+

2αm

M

√
η

4α

−2α

M

γ

4α
Lz, (31)

which, for Lz = m~ and ~ = 1, takes the form

E(NC)
n,m =

2α

M
(2n+ 1)

√
η

4α
+

αm

M

√
η

α

− γm
2M

. (32)
The latter, in the case of m = 0, gives

E(NC)
n =

(
n+

1

2

)
×4R

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)
, (33)

where R =
√

θ2c2+e2B2+4M2ω2c2+2eBθc
16c2+e2B2θ2+8eBθc+4M2ω2θ2c2 . A compari-

son with the energy relation of the harmonic oscillator,
gives the corresponding frequency as

ω(NC) =
4R

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)
, (34)

Here, if we put θ = 0, ω(NC) exactly gives ω(C).

6. Statistical properties in noncommutative
space

Now, for calculation of the partition function in NCS,
we have

Z
(NC)
1 =

∞∑
n=0

e−β(n+
1
2 )ω

(NC)

=
[
2 sinh

(
β

2
ω(NC)

)]−1
=[

2 sinh
(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2ω2θ2

4

))]−1
,

(35)
which gives

Z(NC) =
(
Z

(NC)
1

)N
= (36)

1

2 sinh
(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2ω2θ2

4

))N .
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The latter, for θ = 0, gives Eq. (16). Let us now calculate
some useful statistical quantities. The internal energy for
this system is

U (NC) = − ∂

∂β
lnZ(NC) = (37)

− ∂

∂β
ln
(
e

β

2
ω(NC)

− e
−
β

2
ω(NC))−N

=

Nω(NC)

2
coth

(
βω(NC)

2

)
=

2NR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)
× coth

(
2β

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

))
.

The Helmholtz free energy in the NCS in this case ap-
pears as

A(NC) = −kBT lnZ(NC) = (38)

NkBT ln
(
2 sinh

(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)))
,

and the chemical potential takes the form

µ(NC) =

(
∂A(NC)

∂N

)
V,T

= (39)

kBT ln
(
2 sinh

(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)))
.

As the last part, we report the entropy of the NC case as

S(NC) = −
(
∂A(NC)

∂T

)
V,N

= (40)

−NkB
[
ln
(
2 sinh

(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

))
−2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)
coth

(
2βR

M

(
1 +

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

)))]
.

Here, by inserting θ = 0, Eq. (40) yields Eq. (21).

7. Conclusions

We solved the Schrödinger equation in the presence
of magnetic field in commutative and non-commutative
spaces. By obtaining the exact analytical wave func-
tion and the energy relation in both spaces via the NU
method, we calculated the partition function and thereby
the statistical quantities including the internal energy,
the Helmholtz free energy, chemical potential and the
entropy. Having found the energy, the splitting and the
shifts due to the NC parameter is explicitly seen. In addi-
tion, we see that while the energy difference for successive
quantum number m in the commutative case is

E
(c)
n,m+1 − E(c)

n,m =
2

M

√(
e2B2

16c2
+

M2

4
ω2
)
− 2eB

4Mc

The corresponding difference in the noncommutative
case is

E
(NC)
n,m+1 − E(NC)

n,m = E
(C)
n,m+1 − E(C)

n,m

+
Q

M

(
θ2c2 + 2eBθc

e2B2 + 4M2ω2c2
+

e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

+
[
e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

] θ2c2 + 2eBθc

e2B2 + 4M2ω2c2

)
− 1

2M

(
2θ +

e2B2θ

4c2
+

eBθ2

4c

)
.

That explicitly shows the shift

E(NC)
n,m = E(C)

n,m +
(2n+ 1) +m

M
Q

(
θ2c2 + 2eBθc

e2B2 + 4M2ω2c2

+
e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

+
[
e2B2θ2

16c2
+

eBθ

2c
+

M2

4
ω2θ2

] θ2c2 + 2eBθc

e2B2 + 4M2ω2c2

)
− m

2M

(
2θ +

e2B2θ

4c2
+

eBθ2

4c

)
due to noncommutative formulation.
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Appendix: The Nikiforov-Uvarov method

The parametric form of the Nikiforov–Uvarov method
takes the form [27]:

d2ψ(s)

ds2
+

α1 − α2s

s (1− α3s)

dψ(s)

ds
+

1

s2 (1− α3s)
2

×
{
−ξ1s2 + ξ2s− ξ3

}
ψ(s) = 0. (A.1)

The energy eigenvalues equation and eigenfunctions re-
spectively satisfy the following sets of equation:

α2n− (2n+ 1)α5 + (2n+ 1) (
√
α9 + α3

√
α8)

+n(n− 1)α3 + α7 + 2α3α8 + 2
√
α8α9 = 0, (A.2)

ψ(s) = sα12 (1− α3s)
−α12−(α13/α3)

×P (α10−1,(α11/α3)−α10−1)
n (1− 2α3s) , (A.3)

where
α4 =

1

2
(1− α1) , α5 =

1

2
(α2 − 2α3) ,

α6 = α2
5 + ξ1, α7 = 2α4α5 − ξ2,

α8 = α2
4 + ξ3, α9 = α3α7 + α2

3α8 + α6,

α10 = α1 + 2α4 + 2
√
α8,

α11 = α2 − 2α5 + 2 (
√
α9 + α3

√
α8) ,

α12 = α4 +
√
α8, α13 = α5 − (

√
α9 + α3

√
α8) (A.4)

and Pn is the orthogonal Jacobi polynomial.
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