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We present Monte Carlo simulations of a two-dimensional square lattice semi-
flexible polymer model. Short-range repulsive potential (excluded volume)
and long-range attractive (segment-segment) potential are included. Partic-
ular attention was paid to a phase transition of á model polymer chain from
a random coil state to a dense globule. The transition temperature increases
with the chain length and decreases with the stiffness of the model chain.
The cooperativity of the transition increases with the polymer stiffness.

PACS numbers: 02.60.+y, 82.35.+t

1. Introduction

A collapse transition of chain polymers is a long-standing problem of theo
retical and computational physics [1-3]. The collapse occurs when an attractive
component of a potential of the mean force of intra-polymer interactions (in a solu-
tion) overrides short range excluded volume repulsions between polymer segments.
The problem is important for many reasons. It is strictly related to the theory of
critical phenomena [2-4], and it is often discussed in the context of the coil-globule
transition in globular proteins [5-7]. Several theoretical and computational works
(predominantly Monte Carlo simulations) concerned, the case of long flexible poly-
mers models [8-13]. Mucl less effort has been focused on very important questions
of interplay between short range interactions i.e., conformational stiffness of the
polymer and long range mean-force interactions of polymer segments [14]. The
term "long-range interactions" in polymer physics means interactions between
polymer units (monomers) which are separated by long distance down the chain
backbone but are not necessary distant in space occupied by polymer. Actually

(601)



602 A. Koliński, M. Vieth, A. Sikorski

these long-range interactions are usually of van der Waals type and consequently
effective on rather limited distance, comparable to the size of a single monomer.
Even mean-field approximate considerations have shown that the character of the
polymer collapse changes dramatically, when one takes into consideration the effect
of short range stiffness of the. chain. Even stronger effect of relatively small con-
formational stiffness on the chain collapse has been demonstrated in recent Monte
Carlo studies of three-dimensional lattice polymers [14]. It has been shown that 	 •
this kind of models can explain many aspects of the mechanism of the globular
protein folding process [5-7].

In this context it seems to be interesting to examine a similar effect in the
case of two dimensional polymers [15-17]. On the experimental level the collapse
of two dimensional polymers can be realized on a strongly absorbing surface or in
a thin film of a solution [18-19]. There are some computer simulation works on
the polymer chain collapse in two dimensions [20-24]. The case of a flexible square
lattice model polymers has been studied by Baumgartner [21], arid the present
results can be easily compared with these studies. It should be noted that two
dimensional systems may exhibit even more pronounced effect of chain stiffness
than it has been seen in three dimensional case.

The meaning of chain stiffness or, more precisely, the ratio of conformational
stiffness to the long range attractive force , in the case of two-dimensions, needs
some additional comment. In the simplest case the interpretation is the same as
for the three dimensional systems. However it should be noted that in the 2nd case
this ratio can be in fact moderated by the strength of the absorbing force of the
surface. In the present work we use the simplest possible lattice representation of
the polymer chain , which occupies n consecutive points in a simple square lattice.
The local stiffness is accounted by energetic preference for collinear orientation of
two consecutive "bonds" joining the lattice points (polymer beads). The repulsive
part of the long range interactions is simulated by the requirement of a single
occupancy of ' any lattice points. The long-range attractive force extends to the
distance of a single lattice spacing, i.e. acts between the nearest (nonbonded)
neighbours on the lattice. It should be pointed out that it is treated as a potential
of the mean force. Thus the model is quite general and can be scaled onto wide
class of related physical systems.

2. Model and Monte CarlO procedure

The model macromolecule consist of n -1 bonds (polymer segments) joining
n lattice points. Thus the chain backbone may be represented as an ordered set of
vection of the type l= [±1, 0] and [0, ±1]. Long-range interactions are described
by the following potential of the mean force:

with |i - i| > 1, where rij is a distance between i-th and j-th polymer beads
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counted down the chain. Short-range interactions are described by the potential:

where li is a vector from i-th to (i + 1)-th bead, and i = 1, 2, ..., n - 1.
The total conformational energy for a given state of the model chain can be

calculated as a sum of the both contributions:

The Metropolis scheme is built-in into the Monte Carlo sampling algorithm [1, 22].
Consequently the transition probability from one state (old) to another (new) is
defined as:

where ΔΕ = Enew - Eold , kB is the Boltzmann's constant and Τ — temperature.
The reduced temperature of the model system Τ* can be defined basing on value
of ε a or ε0. The first possibility was chosen because of the easy reference to other
works where εg = 0. Thus T* = kΒT/εa . '*

The method, of generation of trial transitions from a given "old" state to a
"new" one requires detailed discussion, since it is cucial for the ergodicity of the
algorithm. It should be noted that most of the algorithms used in the past are in
fact nonergodic. It can be shown that the lack of ergodicity is not too important
for the three-dimensional polymer models (subclasses of the ergodicity are wide
enough to give correct estimations of the system properties). In the case of two
dimensions lack of ergodicity maybe much more dangerous [26-27].

The following set of conformational transitions was used in the Monte Carlo
algorithm in the present work:

1. Two bond permutation (Fig.1a).

2. Three bond "crankshaft" motion (Fig:1b).

3. End bonds (one and two) random rearrangements (Fig.1c).

4. "Wave" motions (Fig.1d) of randomly chosen piece of the chain.

In a single cycle (an internal time unit of the algorithm) (n — 2) attempts of
the first type, (n - 3) attempts of the second type, 2 attempts of end motions and
one attempt of the "wave" motion were performed. The last type of micromodi-
fication is essential for the ergodicity of the process [5-7]. Since the microscopic
reversibility and the detailed balance of any type of motion described above is ob-
vious, one need only to show that each conformation of the chain can be reached in
the fmite number of steps. Consider for example a completely folded (close packed)
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conformation with. chain ends buried within such a globular state. The set of mi-
- cromodifications 1-3 is usually unable to unfold such a configuration [26-27]. The

same is tue for the "reptation" algorithm used in several works. "Wave" motion
clearly allows the folding and the unfolding of every close packed configurations.
Consequently our algorithm is ergodic since the last type of motion ensures the
stationary condition. The sequence of attempted motions and the choice of a piece
of the chain treated at the moment are governed by a pseudorandom mechanism.

The strategy of sampling was the following. First, the randomly coiled chain
was generated by a separate algorithm. Then the coil-globule transition tempera-
ture was approximately localized in a several relatively short MC simulation runs.
This allowed for the appropriate choice of temperature increments for a series of
production uns. A final production un consisted of at least one cooling-heating
sequence. Every sampling un was preceded by an equilibration un for every tem-
perature. At each temperature sampling uns consisted of up to the order of 10 6

cycles of the Monte Carlo algorithm described above in the case of the longest
chain (n = 300). We remind that a simple cycle obeys many micromodifications
of various types. Since we do not notice any tendency to a hysteresis of the mea-
sured properties near the collapse transition (during a heating—cooling route) the
reported data represent values averaged over the all sampling runs at a given
temperature. Various properties of the model chain (e.g. the mean-square radius
of gyration) were measured every 100 cycles of the MC algorithm. Due to the
Metropolis sampling procedure the average values are calculated as a simple arith-
metical averages. The accuracy of the estimation of various properties depends on
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the property under consideration and can be evaluated from tle dispersion of the
results of several independent runs, i.e. of runs for the same temperature, the same
chain length and the same ratio εg/εα but started from a different initial state and
using a different sequence of pseudorandom numbers. All the computations were
performed on UΝOΧ/ΑΤ-386 computer using an extremely effective algorithm.
The algorithm uses the direct reference list for storing chain conformation. Thus
the test of a double occupancy for a given bead requires a single reference to the oc-
cupancy list and the computation of a Boltzmann factor in the Metropolis scheme
requires just few arithmetical operations since exponential factors are computed
once at the very beginning of the simulation and stored in an appropriate array.
All the above makes computations feasible on a fast personal computer.

3. Results and discussion

Simulations were performed for several values of chain length and four values
of the stiffness parameter εg/εα . Since the case of εg/εα = 0 has been already
examined the majority of our computations concerned Semiflexible polymers i.e.

εg/εα =1,εg/εα =2 andεg/εα =4. It allows us for the elucidation of the effect
of the chain stiffness on the collapse transition of a linear macromolecule.

The model systems are ćharacterized by the average conformational energy
(E), the average heat capacity computed from energy fluctuations CV/kB =
D2 (Ε) = ((Ε2 ) - (Ε) 2 ), the average size of the polymer coil (globule) measured
by the mean-square radius of gyration (S 2 ) which is defined as usual [10]:

where ri and are the coordinates of i-th polymer bead and center of mass of
the coil respectively. In all cases (..) means ensemble averages estimated over a
MC un. Additional various average parameters describing the arrangement of the
chain segments within a coil (globule) are also computed. The most useful seems
to be the average length of a sequence of collinear bonds (n c ) [14]. This parameter
corresponds to the local ordering within the chain. Global ordering of a finite chain
may be described by tle normalized fraction f xy of the chain bonds oriented in
parallel or (antiparallel) manner down the leading direction of the chain vection
(x or y axis). Suppose that within a given conformation n x bonds are orientated
down the x axis (nx + n, = n — 1). For each conformation examined one may
compute fz, as follows

The order parameter p:
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• reflects the orientational ordering of the entire chain. For a long flexible, disordered
coil, or a globule, p ≈ 0. For a short stiff chain one may expect p Ι.

At first we illustrate the method of the localization coil-globule (collapse)
transition temperature for the chosen value of stiffness parameter ε0/εα = 2. In
the Fig. 2 the reduced heat capacity CV/kB = D2 (Ε/kΒΤ) is plotted versus the
reduced temperature Τ* = kBΤ/εα for various values of chain length. With in-
creasing chain length Τt* (at the maximum of the CV/kB) monoticaly increases.
The maximum of CV versus T* plots may be identified with the collapse transition
of a polymer coil. For shorter chains there is a single maximum. For the longest
chain under consideration (n = 300) there are two clear peaks on the CV/kB plot
both observed during the slow heating as well as during the slow cooling of the
system. Although we can not exclude some marginal possibility of the quenching
of the system it is very likely that these two peaks are not artifacts but correspond
to two separate processes of an internal rearrangement of the globule at the col-
lapse temperature. A finite size scaling, which uses the expected critical exponents

• for the infinite system may be used for extrapolation of transition temperature
Tt* (n) to the case of an the infinite chain length Τt*, (∞) [21]. Other temperature

dependent characteristics of the model system can be used for the evaluation of
Τ, (n). In the Fig. 3(a-d) the average reduced conformational energy (Ε/kBΤ),
the average square radius of gyration (S 2 ), the average length (n,) of collinear
sequence of the model chain bonds and the reduced heat capacity CV/kB are plot-
ted versus the reduced temperature T* for the case of n = 100 ( εg/εα = 2 and
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εg /ε α = 4). It is clear that there are well defined change of the system properties
at Tt . Since the energy curve seems to be continuous, the system does not exhibit
existence of metastable states and there is rather not possible to see any hysteresis
of the result, one should expect that the transition is of the second-order in the
limit of n --k οο. For finite systems the transition is also continuous (however co-
operatively of the crossover is rather high) in contrast to the similar semiflexible
systems in three dimensions [14].

The cooperativity of the collapse transition mentioned above increases with
the increasing of the chain stiffness. In the case of semiflexible polymers (εg /εα > 0)
one may notice very sharp increase of the order parameter (n c ) at the transition
region. It means that collapse induced an excess stiffness of the chain, wlile flexible
polymers do not exhibit any observable change of conformational stiffness at the
transition. This is illustrated in the Fig. 3 (c-d). Even more explicitly the effect
may be observed in series of snapshots of configurations of model systems. In
Fig. 4 (a-d) representative conformations of a high temperature coil state and low
temperature globular state are plotted. In the Table I we present the comparison  of
the numerical values of global order parameters p at the globular state for various ,
values of εg/εα and chain lengths. There is a significant level of globular ordering
for stiff, and not too long polymers.

The ratio of the local conformational stiffness to the long-range interactions
ratio changes not only the character of the collapse transition but also shifts the
transition temperature. It can be seen in the Fig. 5. Table II contains numerical
values of Tt (n) for various systems under consideration and when possible also

Tt*(∞) are also given. Tt (∞) values may be obtained by the extrapolation ofΤ,
to n = ∞, assuming that Tt (∞) — Tt*(n) scales as n° with φt 0.64. In spite of
data scattering there is a clear dependence of Τt (n) on chain stiffness εg/εα (for
a given finite n as well as for the limit of n =  οο value). Namely 7t (n) increases
with chain length and with the value of εg/εα.
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4. Conclusions

The model systems studied in this work correspond to a polymer chain on a
strongly adsorbing surface, or in a thin film of solution [18-19]. We found in our
Monte Carlo studies that the interplay between short range conformational stiff .
ness of the polymer chain and repulsive—attractive interactions of chain segments
may significantly change the temperature of the collapse transition of a polymer
coil. With the increasing of the chain length the transition temperature increases.
It means that a weaker attractive force between polymer segments is needed for
the onset of the collapse transition of a stiff chain than it is in the case of more
flexible one. The transition at higher temperatures (for less flexible polymers) is
more cooperative and a low temperature state exhibits the substantial local and
global ordering of chain segments [14].
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