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In our previous works we introduced and applied a mathematical model that allowed us to calculate the
approximate distribution of the values of stochastic impulses ηi forcing vibrations of an oscillator with damping
from the trajectory of its movement. The mathematical model describes correctly the functioning of a physical
RLC system if the coe�cient of damping is large and the intensity λ of impulses is small. It is so because the
in�ow of energy is small and behaviour of RLC is stable. In this paper we are going to present some experiments
which characterize the behaviour of an oscillator RLC in relation to the intensity parameter λ, precisely to λE(η).
The parameter λ is a constant in the exponential distribution of random variables τi, where τi = ti − ti−1,
i = 1, 2, . . . are intervals between successive impulses.

PACS: 45.10.−b, 45.30.+s

1. Introduction

In the paper we discuss the motion of an oscillator de-
scribed by the equation

d2x

dt2
+ 2b

dx

dt
+ a2x = f(t) (1)

with initial conditions

x(0) = 0 and ẋ(0) = 0, (2)

where

f(t) =
∑
ti<t

ηiδti(t), (3)

ηi is any sequence of real numbers, ti is any increasing
sequence of real numbers, δti(t) are the Dirac distribu-
tions at ti (δti(t) = δ(t − ti)) and the sum is taken over
all ti such that ti < t. We assume that a > b > 0.
If ti and ηi are random variables then the solution of

Eqs. (1)�(3) is a stochastic process [1, 2]and it is given
by the following formula:

x(t) =
1√

a2 − b2

∑
0<ti<t

ηi exp(−b(t− ti))

× sin
(√

a2 − b2(t− ti)
)
. (4)

If random variables ηi and τi = ti − ti−1, i ∈ Z,
are stochastically independent, ηi are identically dis-
tributed with �nite expectation and τi = ti − ti−1 with
limi→−∞ ti = −∞ are also identically distributed with
exponential distribution, then the process (the sum is
taken over an in�nite number of ti)

x(t) =
1√

a2 − b2

∑
ti<t

ηi exp(−b(t− ti))

× sin
(√

a2 − b2(t− ti)
)

(5)

is already stationary and is close to (4) for large t. The
process (5) is also ergodic.

To determine theoretical stochastic moments mn+1 of
the process x(t) given by (5), for n ≥ 0 we can use the
following equations (see [3, 4])

mn+1 =
n∑

j=0

(nj )m(n−j)
λE(η(j+1))

c2+j
C(j + 1),

n = 0, 1, 2, . . . (6)

where c =
√
a2 − b2

C(j) =
j!∏j/2−1

r=0 [(jb/c)2 + (2r)2]

c

jb
(7)

for j even and j > 0 and

C(j) =
j!∏(j−1)/2−1

r=0 [(jb/c)2 + (2r + 1)2]
(8)

for j odd and j > 0.

If η assumes a �nite number of values {η1, η2 . . . ηk}
with probabilities pi = P (η = ηi) then, by (6), for any
n > 0 we get

k∑
i=1

pi

[
(mnm1 −mn+1)ηi

+
n∑

j=1

(
n
j

)
m(n−j)m1η

(j+1)
i

C(j + 1)

C(1)cj

]
= 0. (9)

Equation (9) allows us to determine the distributions
of impulses which forced the vibrations of an oscillator if
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mi is known. In practical applications we can �nd these
numbers using the following formula:

E(xn(t)) ∼=
1

k

k∑
i=1

xn(ti/k) (10)

for large t and k. It is a consequence of stationarity and
ergodicity.
The �rst partial mathematical results regarding vibra-

tion of oscillators forced by stochastic impulses can be
found in works [5�11]. In all these studies the movement
of an oscillator is described by linear equations, which
gives merely an approximate description of a physical
phenomenon. It turns out, for example, that the behav-
ior of a real RLC system depends on the intensity of im-
pulses and thus there are discrepancies between this sys-
tem and the mathematical model. In the present work we
discuss this problem. The aim of this paper is to present
the results of some experiments which characterize the
behavior of an oscillator RLC in relation to the intensity
parameter λ, precisely to λE(η).

2. The in�uence of intensity on the parameters

a and b of an oscillator

In order to test the possible practical applications of
the theoretical considerations, electromechanical analo-
gies were used and in the experiment an RCL system
with capacity C = 2 nF and inductivity L = 5 mH that
was applied. The forcing signal η of the value equal to
10 V was generated on the analogue output of the card NI
USB-6251 at the sampling rate of 1 MHz, with simulta-
neous recording of the system's response on the analogue
input. Stochastic moments of excitation of the movement
of the oscillator ti were generated in accordance with the
mathematical assumptions presented above. The appli-
cation was built in the Labview environment. The im-
pulses were executed with the help of single samples of
the shortest executable duration of 2 × 10−6 s, issuing
from the sampling rate.
An analysis of the recorded response of a physical sys-

tem to the stochastic impulses forcing the vibrations of
an oscillator shows that for each impulse the parameters
c, b, and η depend on the duration of work of the os-
cillator (with the passage of time the physical system is
getting warmer), the intensity of the impulses as well as
the temperature of the environment. Our goal is to as-
sess in what way these changes in�uence the di�erences
between the stochastic moment computed in our mathe-
matical model and the moment determined on the basis
of the course of vibrations of an oscillator. Selected val-
ues of these parameters for the impulses represented in
Fig. 1, taken at the 2nd second of the trajectory of oscil-
lator's motion for the intensity λ = 200 can be found in
Table I.
The parameters of the response of the system, at which

the theoretical system is close to the physical one can be
determined on the basis of the stochastic moments calcu-
lated from the trajectory of the motion of the oscillator.

Fig. 1. The trajectory of vibrations of an oscillator
RLC forced by impulses of the intensity λ = 200.

TABLE I

Parameters b, c, and η recorded at the fragment
of the trajectory shown in Fig. 1.

The impulse b c η

1 8540.92 281940.77 742356.06

2 8540.03 281942.46 743105.64

3 8543.87 281944.60 742407.87

4 8538.70 281942.63 742143.68

5 8540.36 281943.91 742362.94

At the same time such a trajectory is perturbed by
noise. The mean value of the noise (−0.00014 V) has
a signi�cant in�uence of the received results. An addi-
tional di�culty lies in charging of the capacitor during
the impulse, which is marked with a rectangle in Fig. 2.

Fig. 2. Comparison of a mathematical model with the
actual course on the basis of one impulse.

The �rst measurement sample of each of the impulses
introduces erroneous data to the approximation of the
parameter c and to all three stochastic moments; more-
over, the �rst of them is charged with the greatest error.
Using in our computations the �rst sample of the sys-
tem's response to the forcing impulse for the intensity
λ = 100 for t = 59.98 s we receive m1 = 0.00092740,
m2 = 0.01993046, and m3 = 0.00426989, rejecting this
sample completely we receive m1 = 0.00088955, m2 =
0.01991461, and m3 = 0.00426325.
Another di�culty consists in the limitations of the al-

gorithm connected with sampling and the duration of
measurement. If the randomly selected distance between
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the impulses is smaller than 2 × 10−6 s, the algorithm
which is responsible for generation of impulses ignores
such an impulse. Moreover, the mathematical model
is calculated for the time approaching in�nity while we
analyse the trajectory of the movement of an oscillator
during one minute. One should not assume that for such
a time interval the intensity has reached the demanded
value. In order to determine the distributions of impulses
it is necessary to adhere to the precision of 10−5 V,
which is connected with the necessity of application of
algorithms determining the intensity that actually was
achieved at the moment when the signal was recorded.
And so, it was determined that for the imposed inten-
sity λ {100, 200, 500} for the calculations aimed at com-
putation of parameters we should assume successively
{98.209, 197.050, 498.615}.
Knowing these imperfections of the measurements and

reducing their in�uence on the analysis of the recorded
process we are able to select the parameters c, b, and η of
a theoretical oscillator so that the mathematical model
with these parameters can best re�ect an actual physi-
cal system working in given conditions. The determined
stochastic moments from the recorded course and from
the mathematical model for all intensities can be found
in Figs. 3�8.

Fig. 3. The �rst stochastic moment determined from
the experiment and from the mathematical model for
λ = 100.

Fig. 4. The second stochastic moment determined
from the experiment and from the mathematical model
for λ = 100.

The values of the parameters of the system's responses
to the stochastic impulses calculated from the stochas-

Fig. 5. The �rst stochastic moment determined from
the experiment and from the mathematical model for
λ = 200.

Fig. 6. The second stochastic moment determined
from the experiment and from the mathematical model
for λ = 200.

Fig. 7. The �rst stochastic moment determined from
the experiment and from the mathematical model for
λ = 500.

Fig. 8. The second stochastic moment determined
from the experiment and from the mathematical model
for λ = 500.
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tic moments for all considered intensities can be found
in Table II. It is worth mentioning that the sample with
the intensity of 100 was recorded �rst; the remaining two
samples were recorded after a two minute break between
the measurements, hence the di�erences between the de-
termined values of the parameters.

TABLE II

The values of the parameters of the system's response,
calculated from the stochastic moments.

The imposed
intensity λ

b c η

100 8555 282221 743800

200 8543 281940 742590

500 8541 281862 742300

The same system RCL responds with di�erent values
of the parameters b, c, and η for di�erent intensities.
The interpretation of the statistical data acquired in the
experiments must take this into account.

3. The in�uence of intensity on the time

of the measurement

It must be mentioned that it is important to select the
duration of the experiment so that the stochastic mo-
ments computed from the trajectory of movement can
provide the possibly most precise information about dis-
tributions. On the one hand, the time cannot be too long
in order to prevent any signi�cant change of the parame-
ters of the system's response, and, on the other hand, it
cannot be too short because it is necessary to calculate
the stochastic moments with adequate precision.

Fig. 9. The �rst and second stochastic moments calcu-
lated as the mean of 100 trajectories and the distribu-
tion of impulses for λ = 100 determined on their basis.

Using the mathematical model, a simulation was per-
formed of hundred trajectories of movement for each of
the considered intensities, and for each trajectory the
�rst two stochastic moments m1 and m2 were computed.
With the help of the means of the moments, distributions
of impulses were calculated from (9). In the diagrams

Fig. 10. As in Fig. 9, but for λ = 200.

Fig. 11. As in Fig. 9, but for λ = 500.

below we can see that for λ = 100 the distribution of im-
pulses may achieve the required value after 12 s (Fig. 9),
for λ = 200 after 30 s (Fig. 10) and for λ = 500 after 42 s
(Fig. 11).
Standard deviation calculated at 30, 40, 50, and 60 s

for both stochastic moments m1 and m2 is shown in
Table III. The longer the measurement time, the more
precise results are obtained. With the growth of intensity,
the standard deviation increases. The standard deviation
for λ = 100 after 30 s equals the standard deviation for
λ = 200 after 50 s.

4. Conclusions

The intensity parameter λ, which characterizes the dis-
tribution of random intervals τi = ti − ti−1, i = 1, 2, . . .
between successive impulses, is the basic parameter in�u-
encing the behavior of an oscillating system. An analysis
of experiments indicates that small perturbations of λ
change the stochastic moments of the process x(t).
However, with a certain approximation, on the basis of

the motion of the system we can determine the distribu-
tions of impulses. Additionally, the analysis carried out
in our study indicates that:

• The parameters of the responses of oscillating sys-
tems forced by stochastic impulses do not change
in a certain time so that an analysis of the system
with the help of the mathematical model described
in the introduction is possible. In our further re-
search we are looking for mechanical systems as
stable as it is possible.
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TABLE III

The values of parameters of the system's response calculated from the stochastic moments.

Time
[s]

λ = 100 λ = 200 λ = 500

δm1 δm2 δm1 δm2 δm1 δm2

30 1.785×10−6 3.918×10−5 2.129×10−6 4.704×10−5 3.863×10−6 8.663×10−5

40 1.497×10−6 3.278×10−5 1.841×10−6 4.009×10−5 3.027×10−6 6.812×10−5

50 1.361×10−6 2.995×10−5 1.650×10−6 3.646×10−5 2.823×10−6 6.323×10−5

60 1.222×10−6 2.674×10−5 1.520×10−6 3.398×10−5 2.584×10−6 5.878×10−5

• The second stochastic moment is more susceptible
to the above mentioned changes of parameters.

• The lesser the intensity, the greater is the impact
of its perturbation on stochastic moments.

• The greater the intensity, the longer the trajectory
of motion should be chosen for an analysis.

Vibrations of the systems forced by stochastic impulses
are a complex process. In technological applications it
will be necessary to obtain information coming at the
same time from more than one recording device in the
same measurement conditions and at the same working
time for each device. Research whose results could be
used for construction of an apparatus for continuous mea-
surement of dust granulation still requires numerous ex-
periments.
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