Iron Elbow and Straight-Chain Tool to Reduce Slip on Wood Transportation: An Experimental Study

Authors

  • Yuniawati Yuniawati National Research and Innovation Agency
  • Mutia Herni Ningrum National Research and Innovation Agency

DOI:

https://doi.org/10.12695/jmt.2023.22.2.2

Abstract

Abstract. One of the obstacles in transporting wood is the occurrence of slippage. Slippage results in low productivity of timber transport with high production costs and soil damage. The research method is an experimental approach, namely designing, manufacturing and testing the supporting tools in the form of angle iron and straight iron chain. The research objective was to determine the effect of the use of assistive devices on slippage, productivity, wood transport costs and soil damage. The results showed that: 1). Tools from the wheelbarrows of the conveyance wheel from the straight iron chain of the slope class 0-8%, 9-15%, and 16-25% can minimize the occurrence of slippage higher than not using this tool, increase the wood transportation productivity, low transportation production costs, and minimize soil damage; 2). Elbow iron and straight-chain tools are the most efficient and effective. 3). The use of tools in the transportation of wood in slopes 0-8%, 9-15%, and 16-25% is recommended for smooth production.

Keywords: Iron elbow, straight chain, productivity, production cost, soil damage


Abstrak. Salah satu hambatan dalam pengangkutan kayu adalah terjadinya selip. Selip berakibat pada rendahnya produktivitas pengangkutan kayu dengan biaya produksi yang tinggi dan terjadinya kerusakan tanah. Metode penelitian adalah pendekatan eksperimen yaitu merancang, membuat dan uji coba alat bantu berupa besi siku dan rantai besi lurus. Tujuan penelitian adalah untuk mengetahui pengaruh penggunaan alat bantu terhadap selip, produktivitas, biaya pengangkutan kayu dan kerusakan tanah. Hasil penelitian menunjukkan bahwa : 1). Alat bantu dari sarung roda alat angkutan dari rantai besi lurus kelas kelerengan 0-8%, 9-15% dan 16-25% dapat meminimalkan terjadinya selip lebih tinggi daripada tidak menggunakan alat bantu, meningkatkan produktivitas pengangkutan kayu, biaya produksi pengangkutan rendah, dan meminimalkan kerusakan tanah; 2). Alat bantu dari besi siku dan rantai besi lurus paling efisien dan efektif; 3). Penggunaan alat bantu pada kegiatan pengangkutan kayu di kelerengan 0-8%, 9-15% dan 16-25% dianjurkan untuk kelancaran produksi.

Kata kunci: Besi siku, rantai lurus, produktivitas, biaya produksi, kerusakan tanah

Downloads

Download data is not yet available.

References

Allman, M., Dudáková, Z., Jankovský, M., & Merganič, J. (2021). Operational parameters of logging trucks working in mountainous terrains of the western carpathians. Forests, 12(6), 1–13. doi: 10.3390/f12060718

Arina. (2020, December 14). Ternyata Ini Penyebab Selip Pada Truk.

Arrofah, M., Pitulima, J., & Mardiah. (2017). Productivity Evaluation of Dug-Loading Equipment and Transport Equipment for Overburden Stripping in August 2016 at Pit 3 East Banko Barat Mining PT Bukit Asam (Persero) Tbk. Jurnal Mineral, 2(2), 1–8.

Battiato, A., Alaoui, A., & Diserens, E. (2015). Impact of Normal and Shear Stresses Due to Wheel Slip on Hydrological Properties of an Agricultural Clay Loam: Experimental and New Computerized Approach. Journal of Agricultural Science, 7(4), 1–19. doi: 10.7892/boris.66320.

British Columbia Forest Safety Council. (2015). Logging Trucks in British Columbia. BC Forest Safety Council on Behalf of the Trucking Advisory Group.

Bulgakov, V., Aboltins, A., Beloev, H., Nadykto, V., Kyurchev, V., Adamchuk, V., & Kaminskiy, V. (2021). Maximum Admissible Slip of Tractor Wheels without Disturbing the Soil Structure. Applied Sciences, 11(15), 6893. doi: 10.3390/app11156893

Faizal, A. (2014). Slip Control Design on Haul Truck Using Sliding Mode Controller Method. Jurnal ECOTIPE, 1(2), 1–7. doi: 10.33019/ecotipe.v1i2.46

Firmansyah, Ibrahim, E., & Suwardi, F. R. (2018). Technical Stucy of Geometry Production Road to Improved Overbuden Production at The Articuled Dump Truck Volvo A 40F in PT Lematang Coal Lestari District Muara Enim. Jurnal Pertambangan, 2(3), 19–26. doi: 10.36706/jp.v2i3.7396

Gao, X., & Lin, C. (2021). Electromechanical Coupling Approach for Traction Control System of Distributed Drive Electric Vehicles. E3S Web of Conferences, 236. doi:10.1051/e3sconf/202123601007

Hambleton, J., & Drescher, A. (2008). Soil Damage Models for Off-Road Vehicles. In K. R. Reddy, M. V Khire, & A. N. Alshawabkeh (Eds.), Geosustainability and Geohazard Mitigation Procedings of Sessions of Geocngress . ASCE.

Harbor, M. C., Eneh, I. I., & Ebere U C. (2021). Precision Control of Autonomous Vehicle under Slip Using Artificial Neural Network. International Journal of Research and Innovation in Applied Science, 6(9), 51–55. www.rsisinternational.org

Hoever, C., & Kropp, W. (2015). A Model for Investigating the Influence of Road Surface Texture and Tyre Tread Pattern on Rolling Resistance. Journal of Sound and Vibration, 351, 161–176.

Ibrahim, A. A., & Abdullah, M. A. (2013). The Effects of Vehicle Speed and Type of Road Surface on the Longitudinal Slip of Tires and the Brake Stopping Distance. Engineering and Technology Journal, 31(10), 1854–1869.

Idkham, M., Mandang, T., Hermawan, W., & Pramuhadi, G. (2018). Model Performance Analysis of Narrow Lug Wheel for Wetland at Soil bin. Jurnal Keteknikan Pertanian, 6(1), 1–10. doi: 10.19028/jtep.06.1.15-22.

Jang, J. (2020). Wheel Slip-based Road Surface Slipperiness Detection. The Open Transportation Journal, 14(1), 186–193. doi:10.2174/1874447802014010186

Jansson, V. (2022). A Literature Study of Rolling Resistance and Its Affecting Factors [Thesis]. KTH Royal INstitute of Technology.

Koirala, A., Kizha, A. R., & Roth, B. E. (2017). Perceiving Major Problems in Forest Products Transportation by Trucks and Trailers: A Cross-sectional Survey. European Journal of Forest Engginering, 3(1), 23–34.

Kumar, A., & Gupta, A. (2021). Review of Factors Controlling Skid Resistance at Tire-Pavement Interface. In Advances in Civil Engineering (Vol. 2021, pp. 1–16). Hindawi Limited. doi: 10.1155/2021/2733054

Kurnia, M. J. D., Guntoro, D., & Zaenal. (2018). Performance Evaluation of Dump Truck Tires in Andesite Mining Activities (Case Study of PT Desira Guna Utama, Argapura Village, Cigudeg District, Bogor Regency, West Java Province). Prosiding Teknik Pertambangan, 124–131.

Kurniawan, A., Amin, M., & Bochori. (2019). The Effect of Road Geometry Before and After the Improvement of Roads on The Productivity and Fuel Consumption and Fuel Ratio. Jurnal Pertambangan, 3(1), 26–35.

Lestari, P. D. R., Sartomo, A., & Yuwono, T. (2019). Road Load and Wheel Traction Simulation of 4WD Rolling Chassis Selection for Water Cannonr Vehicle. Majalah Ilmiah Pengkajian Industri, 13(1), 65–74. doi: 10.29122/mipi.v13i1.3299

Mirosław, T., & Mirosław, M. (2021). Problem of Slip Definition in Driving Systems. MATEC Web of Conferences, 338, 1–10. doi: 10.1051/matecconf/202133801019.

Mustofa, A., Wicaksono, J. G., Nurhakim, N., Afriko, A., & Melati, S. (2019). Mine Transport Road Improvement: Effect of Changes in Road Layer Structure on Transport Equipment Productivity. Jurnal Himasapta, 1(01), 1–10. doi: 10.20527/jhs.v1i01.906

Nugroho, B. (2022). Analisis Biaya Pemanenan. Institut Pertanian Bogor.

Radite, P. A. S., Hermawan, W., & Soembagijo, A. (2008, November). Design and Testing of Dry Land Steel Wheels for 2-Wheel Tractors. Prosiding Seminar Nasional Teknik Pertanian .

Rahman, R. F., Wikarta, A., & Sutantra, I. N. (2018). Design and Analysis of Traction Characteristics on Multipurpose Rural Cars WAPRODES. Jurnal Teknik ITS, 7(1), 21–26. doi: 10.12962/j23373539.v7i1.29825

Rees, S. (2021). Review of Vertical Allinement on Roads Case Study: Mareku-Afa-Afa Road. Jurnal Akrab Juara, 6(5), 84–96.

Salehi, M., Noordermeer, J. W. M., Reuvekamp, L. A. E. M., Tolpekina, T., & Blume, A. (2020). A New Horizon for Evaluating Tire Grip Within a Laboratory Environment. Tribology Letters, 68(37), 1–18. doi: 10.1007/s11249-020-1273-5

Sukisno, Hindarto, K. S., Hasanudin, & Wicaksono, A. H. (2011). Mapping Potential and Status of Soil Damage to Support Biomass Productivity in Lebong Regency. Prosiding Seminar Nasional Budidaya Pertanian, 140–156.

Sunggono, W. S. W., & Wasiwitono, U. (2017). Perancangan dan Analisa Karakteristik Traksi Sistem Powertrain Mobil Produksi Pedesaan. Jurnal Teknik ITS, 6(1), 170–173. doi: 10.12962/j23373539.v6i1.22321

Suprayogo, D., Widianto, Purnomosidi, P., Widodo, R. H., Rusiana, F., Aini, Z. Z., Khasanah, N., & Kusuma, Z. (2001). Degradation of Soil Physical Properties as a Result of Forest Land Use Conversion to Monoculture Coffee Systems: A Study of Changes in Soil Macroporosity. Jurnal Agrivita, 26, 60–68.

Wahyudi, D. T., & Khaerudini, D. S. (2020). Anti-Slip Shoe Design for Colt Diesel Wheels on Muddy Roads. Jurnal Teknik Mesin, 13(1), 6–12. doi: 10.30630/jtm.13.1.278

Yuniawati, & Suhartana, S. (2015). The Effect of Slippage on Soil Damage in the Transportation of Pine Merkusi. Jurnal Sains &Teknologi Lingkungan, 7(2), 95–107. doi: 10.20885/jstl.vol7.iss2.art4

Yuniawati, Y. (2015). Skid Reduction on Acacia Mangium Wood Transport Dirt Road. MECHANICAL, 6(1), 36–42. doi: 10.23960/mech.v6.i1.201505

Yuniawati, Y., Dulsalam, D., Mansyur Idris, M., Suhartana, S., & Sukadaryati, S. (2015). Auxiliary Tools of Log Hauling Truck to Reduce Slipped Wheel on Soil Road Without Paving. Jurnal Penelitian Hasil Hutan, 33(4), 387–395. doi: 10.20886/jphh.2015.33.4.387-395

Zulkarnain, F. (2020). Pemindahan Tanah Mekanis Dan Peralatan Kontruksi (M. Arifin, Ed.; Pertama). UMSU Press.

Downloads

Submitted

2022-05-31

Accepted

2023-05-23

Published

2023-09-04

How to Cite

Yuniawati, Y., & Ningrum, M. H. (2023). Iron Elbow and Straight-Chain Tool to Reduce Slip on Wood Transportation: An Experimental Study. Jurnal Manajemen Teknologi, 22(2), 135–148. https://doi.org/10.12695/jmt.2023.22.2.2

Issue

Section

Articles