
Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

Towards Fast and Understandable Computa-
tions: Which “And”- and “Or”-Operations Can
Be Represented by the Fastest (i.e., 1-Layer) Neu-
ral Networks? Which Activations Functions Al-
low Such Representations?

Kevin Alvarez1, Julio C. Urenda1,2, Orsolya Csiszár3,4,
Gábor Csiszár6, József Dombi7, György Eigner5, and
Vladik Kreinovich1

Departments of 1Computer Science and 2Mathematical Sciences
University of Texas at El Paso, El Paso, TX 79968, USA
kalvarez9@miners.utep.edu, jcurenda@utep.edu, vladik@utep.edu
3Faculty of Basic Sciences, University of Applied Sciences Esslingen
Esslingen, Germany
4Institute of Applied Mathematics, Óbuda University
5Institute of Biomatics and Applied Artificial Intelligence, Óbuda University
Budapest, Hungary,
orsolya.csiszar@nik.uni-obuda.hu
eigner.gyorgy@nik.uni-obuda.hu
6Institute of Materials Physics, University of Stuttgart
Stuttgart, Germany
gabor.csiszar@mp.imw.uni-stuttgart.de
7Institute of Informatics, University of Szeged
Szeged, Hungary, dombi@inf.u-szeged.hu

Abstract: We want computations to be fast, and we want them to be understandable. As we
show, the need for computations to be fast naturally leads to neural networks, with 1-layer
networks being the fastest, and the need to be understandable naturally leads to fuzzy logic
and to the corresponding “and”- and “or”-operations. Since we want our computations to
be both fast and understandable, a natural question is: which “and”- and “or”-operations
of fuzzy logic can be represented by the fastest (i.e., 1-layer) neural network? And a related
question is: which activation functions allow such a representation? In this paper, we provide
an answer to both questions: the only “and”- and “or”-operations that can be thus repre-
sented are max(0,a+ b− 1) and min(a+ b,1), and the only activations functions allowing
such a representation are equivalent to the rectified linear function – the one used in deep
learning. This result provides an additional explanation of why rectified linear neurons are
so successful. With also show that with full 2-layer networks, we can compute practically any

– 27 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

“and”- and “or”-operation.

Keywords: neural networks, fuzzy logic, “and”- and “or”-operations, rectified linear neu-
rons, explainable AI

1 Formulation of the Problem

1.1 What we plan to do in this section
In this section, we not only explain our problem – we also explain why this problem
is, in our opinion, very important.

We do not just want to formulate a technical problem listed in the title of this paper –
we want to explain, from scratch, why we use neural networks and fuzzy techniques,
and why it is important to relate these techniques.

We hope that these explanations will motivate the readers to continue research in
this direction – in particular, to solve open problems that we listed at the end of this
paper.

1.2 Computations are needed
In many application areas, we need to process data. Because of this need, computers
are ubiquitous. What do we want from the computation results? First of all, we want
them to be correct:

• if we are predicting weather, we want these predictions to be mostly success-
ful,

• if we are deciding whether to give a loan to a bank’s customer, we want to
be sure that customers who get the loans have a high chance of repaying
them, and that most customers to whom the program decided not to give the
loan will not become very successful – and thus will not present our missed
opportunities.

Coming up with such an algorithm is not easy, this is the main challenge. But once
we have this algorithm, there are two other important challenges.

1.3 Two important challenges: computation speed and under-
standability

First, in most practical problems, we need to process a large amount of data – and
we need to make a decision reasonably fast:

• if we predict weather, we need to take into account all the results of today’s
measurements of temperature, wind speed and direction, etc., in a given ge-
ographic areas, satellite images, historical data – and get the prediction of
tomorrow’s weather the same day: otherwise, our prediction will be useless;

– 28 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

• if we decide whether to give a person a loan, we need to take into account
this person’s financial history, financial history of similar customers, general
economic situation in the region, etc. – and get the result fast, otherwise the
customer may lose the business opportunity for which he/she is seeking this
loan.

So, we need all the computations to be as fast as possible.

We also ideally want the computations to be understandable.

• When a weatherperson on the TV predict’s tomorrow’s weather, it is much
more convincing if this person explains why we should expect strong winds,
or, vice versa, perfect weather. These explanations may not be quantitative,
usually, qualitative explanations are good enough.

• When we explain, to the person, why he/she is not getting a loan while his/her
friends are, we need to have some reasonable explanations – at least to avoid
lawsuits claiming gender-based, age-based, or race-based bias.

How can we achieve these two goals?

1.4 Need for fast computations leads to neural networks
A natural way to speed up computations is to perform them in parallel. In the past,
only high-performance super-computers had several processors working in parallel,
but nowadays, parallelism is ubiquitous: even the cheapest computers have up to
four processors working in parallel. In parallel computations, all that matters is how
fast computations can be performed on one of the processors – since computations
on other processors are performed at the same time.

Which computations are fast? In general, computers process numbers, so, in gen-
eral, any computation takes numerical inputs x1, . . . ,xn – e.g., measurement results –
and converts them into one or more numerical values y. In mathematics, a situation
when to each input x = (x1, . . . ,xn) there corresponds the result is known as a func-
tion, so we can say that each processor computes some function y = f (x1, . . . ,xn).

Which functions are the easier to compute? Functions can be linear or non-linear.
In general, linear functions, i.e., functions of the type

f (x1, . . . ,xn) = w0 +w1 · x1 + . . .+wn · xn (1)

are the easiest to compute, so let us keep them in our list of easiest-to-compute
functions. However, we cannot just limit ourselves to linear functions, because oth-
erwise, if we only apply linear transformations, you will only get linear functions,
but in real life, many dependencies are nonlinear. So, we need some nonlinear func-
tions as well.

Which nonlinear functions are the easiest to compute? In general, the more inputs
the function has, the longer it takes to process all these inputs. Thus, the easiest to
compute are functions of one variable y = s(z).

So, we arrive at the following computation scheme:

– 29 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

• first, each processor applies the fastest – linear – transformation to the data,
i.e., computes the value z = w0 +w1 · x1 + . . .+wn · xn;

• if this is not enough, we apply the fastest non-linear transformation and com-
pute y = s(z); as a result, we get the value

y = s(w0 +w1 · x1 + . . .+wn · xn); (2)

• then, if needed, we apply another linear transformation, then another nonlin-
ear one, etc.

As a result, we get a layered computation scheme in which on each layer, each pair
of processors computes the values (2), and then the results from these pairs become
inputs to another layer, etc.

This scheme is what is usually known as a neural network; readers interested in
more details can see, e.g., [6, 11, 23]. A two-part component computing the ex-
pression (2) is known as a neuron, and the non-linear function s(z) is known as
the activation function. So, the need for fast computations has indeed led us to
neural networks. The fewer layers, the faster computations: 1-layer networks are
the fastest, 2-layer networks are second fastest. This is especially important if we
implement neural networks in hardware; see, e.g., [1].

Of course, to make sure that neural networks are useful, we need to check that neural
networks can indeed describe any possible continuous dependence with any desired
accuracy, i.e., in precise terms, that for every continuous function y = f (x1, . . . ,xn)
on a bounded domain and for every desired accuracy ε > 0, there exists a function
which is ε-close to f (x1, . . . ,xn) and which can be represented by a neural network.
Such universal approximation results are indeed known for many different activa-
tion functions; see, e.g., [6, 7, 19, 26].

Neural networks have been very successful in practical applications. Which activa-
tion function should we use? Traditionally, the most widely used neural networks
used sigmoid activation functions s(z) = 1/(1+ exp(−z)). Lately, it turned out that
even more successful are deep neural networks [11] that use rectified linear func-
tions s(z) = max(0,z).

Comments.

• Deep neural networks not only use a different activation function, they also
use a large number of layers. This makes the computations somewhat slower
that for traditional “shallow” (few-layers) neural networks, but this slowing
down is needed to provide a better approximation accuracy; see, e.g., [4, 21,
23, 22] for a detailed explanation of this need.

• Another case when sacrificing speed can improve accuracy is recurrent neural
networks that work iteratively: Hopfield networks [13], Elman networks [10],
Kohonen’s self organizing maps [16], fuzzy cognitive maps (see, e.g., [27,
49]), and other similar schemes (see, e.g., [9]).

– 30 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

• How many neurons do we need to get a good approximation? The space of
all continuous function is infinite-dimensional. This means, crudely speak-
ing, that to precisely describe a generic function, we need to use infinitely
many parameters. The more parameters we use, the more accurately we can
approximate each function. For neural networks, this means that the more
neurons we allow, the more accurate is the resulting approximation.

• How can we prove universal approximation results? Many of these proofs
use Stone’s generalization [46] of the classical Weierstrass’s Theorem [52]
according to which each continuous function can be approximated, with any
given accuracy, by a polynomial.

• Interestingly, by using appropriate activation functions, we can get not only
an ε-approximation to the desired function f (x1, . . . ,xn), but also the exact
representation of this function. This possibility follows from the unexpected
Kolmogorov’s solution [17] to the 13th Hilbert problem [12], one of the 23
problems that 19 century mathematicians left to the 20th century to solve. Ac-
cording to Kolmogorov’s theorem, every continuous function on a bounded
domain can be represented as a composition of addition and functions of one
variable; see, e.g., [30, 31]. This result – as well as its improvements and
generalizations such as [36, 45] – underlies the theorems about exact repre-
sentation of functions by neural networks; see, e.g., [28].

It is worth mentioning that the corresponding activation functions cannot be
smooth. This fact relates these functions to another Weiestrass’s result –
that there exist continuous functions which are nowhere differentiable [51].
Weierstrass’s functions are actually historically the first examples of what is
now called a fractal; see, e.g., [33].

• It is also worth mentioning that the universal approximation result for neural
networks has applications beyond neural networks themselves: e.g., it can
explain complexity of collective decision making [48] and – on the qualitative
level – the existence and properties of quarks [20].

1.5 Need for understandability leads to fuzzy techniques
Neural networks can compute any dependence – and we can train them to fit any
given data, but the problem is that the resulting recommendations come with no
justification. As we have mentioned, it is desirable to make our recommendations
understandable – i.e., justified, explainable by words from natural language.

Understandability means that we should be able to describe the computations by
using words from natural language. One of the main challenges in coming up with
such a description is that natural language is imprecise (fuzzy), so it is difficult to
find the relation between imprecise words from natural language and precise algo-
rithms. In solving this challenge, it is natural to use the experience of researchers
who came up with such a relationship from the other side of it: by trying to translate
natural-language knowledge into precise terms.

This experience led to the design on fuzzy logic by Lotfi Zadeh; readers interested in

– 31 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

more details can see, e.g., [5, 15, 34, 42, 43, 55]. Lotfi Zadeh, a specialist in control
and an author of a successful textbook on control, noticed, in the early 1960s, a puz-
zling phenomenon: that human-led control often leads to much better results than
even the optimal automatic control. The answer to this puzzle was clear: humans
use additional knowledge which was not taken into account when the automatic
controllers were designed. The reason why this additional knowledge was not taken
into account is that this knowledge is not described in precise terms, it is described
by using imprecise words from natural language. For example, an operator may
say: if the pressure drops a little bit, increase a little bit the flow of the chemical
into the chamber; here, “a little bit” does not have a precise meaning. Zadeh in-
vented a methodology for translating this “fuzzy” knowledge into precise terms, a
methodology that he called fuzzy logic, or, more generally, fuzzy techniques.

His main point is that in contrast to exact statements like “pressure is below 1.2
atmospheres” – which is always either true or false – about the statements that in-
clude natural-language words – like “the drop from 1.3 to 1.2 means that the pres-
sure dropped a little bit” – experts are not sure. The smaller the drop, the larger the
expert’s degree of confidence that this statement is true. For each value of the corre-
sponding quantity (e.g., pressure), we can gauge the expert’s degree of confidence
in the corresponding statement by asking the expert to mark it on a scale, e.g., from
0 to 10. The resulting mark depends on what scale we use: from 0 to 5 or from 0 to
10 or form 0 to any other number. To make these estimates uniform, a reasonable
idea is to divide the mark by the largest number on the scale, so that, e.g., 7 on a
scale from 0 to 10 becomes 7/10 = 0.7. In this new scale, 1 means that the expert
is absolutely confident that this statement is true, 0 means that the expert is abso-
lutely confident that the statement is false, and values between 0 and 1 correspond
to intermediate degrees of confidence.

The reason why this methodology is called fuzzy logic is that in addition to sim-
ple statements – like the ones above – expert knowledge often contains statements
that include logical connectives like “and” and “or”. For example, an expert can
recommend a certain action if the pressure dropped a little bit and the temperature
increased somewhat. How can we gauge our degree of certainty in such composite
statements? It would be great if we could similarly ask the expert to estimate his/her
degree of confidence for all possible pairs of values (pressure, temperature). If we
have a composite statement combining three or four different statements, we would
need to consider all possible triples or quadruples. Even if we consider a reasonable
number 20-30 of possible values of each quantity, it makes sense to ask the expert
about all 30 values, but asking about all 304 = 810000 possible quadruples is not
realistic. Since we cannot directly elicit the degree of confidence in all such com-
posite statements directly from the expert, we need to be able to estimate this degree
based on whatever information we can elicit – i.e., based on the expert’s degrees of
confidence in the component statements.

In precise terms, we need a procedure that would take, as input, the degrees of
confidence a and b in two statements A and B and return an estimate for the expert’s
degree of confidence in a composite statement A&B. We will denote this estimate
by f&(a,b). The corresponding function f& is known as an “and”-operation, or,

– 32 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

for historical reason, a t-norm.

Since the statements “A and B” and “B and A” mean the same thing, it is reasonable
to require that for these two statements, we have the same degree of confidence, i.e.,
that f&(a,b) = f&(b,a). In other words, an “and”-operation must be commutative.

When A is false, clearly A&B is false too, so we must have f&(0,b) = 0 for all
b. When A is true, our degree of confidence in A&B is the same as our degree of
confidence in B, i.e., we must have f&(1,b) = b.

Similarly, we need a procedure that would take, as input, the degrees of confidence
a and b in two statements A and B and return an estimate for the expert’s degree of
confidence in a composite statement A∨B. We will denote this estimate by f∨(a,b).
The corresponding function f∨ is known as an “or”-operation, or, for historical
reason, a t-conorm.

Since the statements “A or B” and “B or A” mean the same thing, it is reasonable to
require that for these two statements, we have the same degree of confidence, i.e.,
that f∨(a,b) = f∨(b,a). In other words, an “or”-operation must be commutative.

When A is true, clearly A∨B is true too, so we must have f∨(1,b) = 1 for all b.
When A is false, our degree of confidence in A∨B is the same as our degree of
confidence in B, i.e., we must have f∨(0,b) = b.

Fuzzy logic can help translate expert rules of the type “if Ai(x) then Bi(u)” related
the input x with the control value u – rules that are formulated by using natural-
language terms Ai(x) and Bi(u) (such as “x is small”) – into precise recommenda-
tions. Indeed, for any given input x, the value u is a reasonable control if one of the
rules is applicable, i.e., if either A1(x) is true and B1(u) holds, or A2(x) is true and
B2(u) holds, etc.:

(A1(x)&B1(u))∨ (A2(x)&B2(u))∨ . . .

We can elicit, from the expert, degrees to which the statements Ai(x) and Bi(u)
hold for different values x and u – the resulting functions are known as membership
functions. After that, we can use appropriate “and”- and “or”-operations to come
up with a degree to which, for given input x, the control u is reasonable. Then, if
needed, we can combine these degrees into a single recommendation ū(x1, . . . ,xn)
corresponding to the given input (x1, . . . ,xn).

It is know that functions ū(x1, . . . ,xn) corresponding to different rules and different
membership functions are also universal approximators; see, e.g., [2, 3, 8, 18, 24,
25, 37, 40, 44, 50, 53, 54].

Comments.

• Similarly to the case of neural networks, the more rules we allow, the more
accurate is the approximation: if we fix the number of rules, we can only
achieve a limited approximation accuracy; see, e.g., [14, 35, 47].

• Similar universal approximation results are known for fuzzy neural networks
that combine fuzzy and neural techniques; see, e.g., [29, 32].

– 33 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

• Also similarly to the neural network case, it is possible not only to approxi-
mate any continuous function by an appropriate system, but also to represent
any function exactly – by using non-smooth (“fractal”) membership functions
motivated by the above-mentioned Kolmogorov’s theorem; see, e.g., [38, 39].

1.6 Natural questions
As we have mentioned earlier, we want our computations to be both fast and un-
derstandable. Understandable means that we have to use some “and”- and “or”-
operations. We thus want these operations to be fast. The fastest possible computa-
tions are computations on a 1-layer neural network, in which thus “and”-operation is
computed by a single neuron, and in which the “or”-operation can also be computed
by a single neuron. So, natural questions are:

• which “and”- and “or”-operations can be computed by a 1-layer neural net-
work, and

• what activation functions allow computing “and”- and “or”-operations by
such neural networks.

1.7 What we do in this paper
In this paper, we provide answers to both questions, namely:

• we show that the only “and”- and “or”-operations which can be computed by
a 1-layer neural network are max(0,a+b−1) and min(a+b,1), and

• we show that the only activation function allowing such fast computations
are equivalent to rectified linear neurons – which probably provides some
explanations for the current success of such activation functions.

We also show that if we allow linear pre-processing after a single neuron, then we
also represent min(a,b) and max(a,b). If we allow several neurons in a 2-layer
network, then, in effect, we can compute any “and”- and “or”-operations.

2 Definitions and the Main Results
Definition 1. By an “and”-operation, we mean a function

f& : [0,1]× [0,1]→ [0,1] (3)

for which the following properties are satisfied:

• f&(a,b) = f&(b,a) for all a and b,

• f&(0,b) = 0 and f&(1,b) = b for all b.

Definition 2. By an “or”-operation, we mean a function

f∨ : [0,1]× [0,1]→ [0,1] (4)

for which the following properties are satisfied:

– 34 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

• f∨(a,b) = f∨(b,a) for all a and b,

• f∨(0,b) = b and f∨(1,b) = 1 for all b.

Comment. Usually, for both “and”- and “or”-operations, other properties are re-
quired as well – namely, continuity, monotonicity, and associativity – but for our
main results, we do not need these additional properties.

Definition 3. We say that a function f (x1, . . . ,xn) can be represented by a 1-layer
neural network if this function can be represented in the form

f (x1, . . . ,xn) = s(w0 +w1 · x1 + . . .+wn · xn) (5)

for some function s(z) and for some values wi. The corresponding function s(z) is
called an activation function.

Definition 4. By a rectified linear function, we mean a function

s0(z) = max(0,z). (6)

Definition 5. We say that two activation functions s1(z) and s2(z) are equivalent if
for some constants ai j and bi j, we have

s1(z) = a10 +a12 · s2(b10 +b11 · z)+a1z · z (7)

and
s2(z) = a20 +a21 · s1(b20 +b21 · z)+a2z · z (8)

for all z.

Comment. This way, the corresponding multi-layer neural networks represent, in ef-
fect, the same class of functions, since each non-linear layer is equivalent to adding
extra linear transformations before and after the non-linear layer representing an-
other activation function.

Theorem 1. The only “and”-operation that can be represented by a 1-layer neural
network is max(0,a+b−1), and all activation functions allowing such a represen-
tation are equivalent to the rectified linear function.

Theorem 2. The only “or”-operation that can be represented by a 1-layer neural
network is min(a+b,1), and all activation functions allowing such a representation
are equivalent to the rectified linear function.

Comment. These results provide another explanation for why rectified linear activa-
tion functions are so successful in deep neural networks.

– 35 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

2.1 Proof of Theorem 1
Let us consider an “and”-operation f&(a,b) which can be represented by a 1-layer
neural network. By definition of such a representation, this means that f&(a,b) =
s(w0 +wa ·a+wb ·b) for some function s(z) and for some coefficients wi.

By definition of an “and”-operation, we have f&(a,b) = f&(b,a) for all a and b.
Thus, the expression s(w0 +wa · a+wb · b) should not change if we swap a and b:
s(w0 +wa ·a+wb ·b) = s(w0 +wa ·b+wb ·a). Therefore, we must have wa = wb,
i.e., f&(a,b) = s(w0 +wa ·a+wa ·b), and thus,

f&(a,b) = s(w0 +wa · (a+b)). (9)

Let us introduce an auxiliary function t(z) def
= s(w0 +wa · z). This function is, by the

definition of equivalence, equivalent to s(z). In terms of this auxiliary function, the
formula (9) takes the following simplified form:

f&(a,b) = t(a+b). (10)

For a= 0, by definition of an “and”-operation, we have f&(0,b) = 0 for all b∈ [0,1],
thus t(z) = 0 for all z ∈ [0,1].

For a= 1, by definition of an “and”-operation, we have f&(1,b) = b for all b∈ [0,1],
thus t(1+ b) = b for all b ∈ [0,1]. For z = 1+ b, we have z ∈ [1,2] and b = z− 1,
thus t(z) = z−1 for all z ∈ [1,2]. So, we have:

• t(z) = 0 for z ∈ [0,1], and

• t(z) = z−1 for z ∈ [1,2].

These two cases can be combined into a single formula

t(z) = max(0,z−1). (11)

Substituting this expression for t(z) into the formula (10), we conclude that
f&(a,b) = max(0,a+ b− 1). So, this “and”-operation is indeed the only one that
can be represented by a 1-layer neural network.

Which activation functions can be used for this representation? From the formula
(11), we can see that t(z) is indeed equivalent to the rectified linear activation func-
tion. Since the original function s(z) is equivalent to t(z), we can conclude that s(z)
is also equivalent to the rectified linear activation function. Thus, the 1-layer repre-
sentation of an “and”-operation is only possible if we use rectified linear neurons.

The theorem is proven.

2.2 Proof of Theorem 2
Let us now consider an “or”-operation f∨(a,b) which can be represented by a
1-layer neural network. By definition of such a representation, this means that
f∨(a,b) = s(w0+wa ·a+wb ·b) for some function s(z) and for some coefficients wi.

– 36 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

By definition of an “or”-operation, we have f∨(a,b) = f∨(b,a) for all a and b.
Thus, the expression s(w0 +wa · a+wb · b) should not change if we swap a and
b: s(w0+wa ·a+wb ·b) = s(w0+wa ·b+wb ·a). Therefore, we must have wa = wb,
i.e., f∨(a,b) = s(w0 +wa ·a+wa ·b), and thus,

f∨(a,b) = s(w0 +wa · (a+b)). (12)

Similar to the proof of Theorem 1, let us introduce an auxiliary function t(z) def
=

s(w0 +wa · z). This function is, by the definition of equivalence, equivalent to s(z).
In terms of this auxiliary function, the formula (12) takes the following simplified
form:

f∨(a,b) = t(a+b). (13)

For a = 0, by definition of an “or”-operation, we have f∨(0,b) = b for all b ∈ [0,1],
thus t(z) = z for all z ∈ [0,1].

For a = 1, by definition of an “or”-operation, we have f&(1,b) = 1 for all b ∈ [0,1],
thus t(1+ b) = 1 for all b ∈ [0,1]. For z = 1+ b, we have z ∈ [1,2] and b = z− 1,
thus t(z) = 1 for all z ∈ [1,2]. So, we have:

• t(z) = z for z ∈ [0,1], and

• t(z) = 1 for z ∈ [1,2].

These two cases can be combined into a single formula

t(z) = min(z,1). (14)

Substituting this expression for t(z) into the formula (13), we conclude that
f∨(a,b) = min(1,a+ b). So, this “or”-operation is indeed the only one that can
be represented by a 1-layer neural network.

Which activation functions can be used for this representation? One can easily see
that the expression (14) can be represented in an equivalent form

t(z) = 1−max(1− z,0), (15)

so t(z) is indeed equivalent to the rectified linear activation function. Since the orig-
inal function s(z) is equivalent to t(z), we can conclude that s(z) is also equivalent
to the rectified linear activation function. Thus, the 1-layer representation of an
“or”-operation is only possible if we use rectified linear neurons.

The theorem is proven.

3 Two-Layer Networks and the Auxiliary Result
3.1 What about other “and”- and “or”-operations?
In this paper, we have shown that only the operations f&(a,b) = max(0,a+b−1)
and f∨(a,b) = min(a+ b,1) can be represented by 1-layer neural networks. How
many layers do we need to represent general “and”- and “or”-operations?

– 37 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

It is known – see, e.g., [41] – that for every continuous “and”- (or “or”-) operation
f (a,b) and for every ε > 0, then exists a function F(z) for which an “and”- (or,
respectively, “or”-) operation

g(a,b) = F−1(F(a)+F(b)) (16)

satisfies the property | f (a,b)−g(a,b)| ≤ ε for all a and b. (Of course, for this result
to be true, it is not sufficient to have the above simplified definitions of “and”- and
“or”-operations: we also need to assume associativity and monotonicity.)

For very small ε , the operations f (a,b) and g(a,b) are practically indistinguishable.
So, from practical viewpoint, every “and”-operation and every “or”-operation can
be represented in the form (16). Every function of this form can be computed by a
2-layer neural network:

• in the first layer, we use the inputs a and b to compute the values a′ = F(a)
and b′ = F(b);

• then, in the second layer, we compute the value F−1(a′+b′), which is exactly
the desired value F−1(F(a)+F(b)).

So, from the practical viewpoint, every “and”-operation and every “or”-operation
can be computed by a 2-layer neural network.

For example, a widely used “and”-operation f&(a,b) = a · b can be computed as
exp(ln(a) + ln(b)), with F(z) = ln(z) and the inverse function F−1(z) = exp(z).
Similarly, a widely used “or”-operation f∨(a,b) = a+b−a ·b can be computed in
the form (16) with F(z) = ln(1− z) and F−1(z) = 1− exp(z).

3.2 When is it sufficient to have a single neuron with linear post-
processing?

We have shown that, from the practical viewpoint, all “and”- and “or”-operations
can be represented by a 2-layer neural network. Interestingly, some “and”- and
“or”-operations f (a,b) can be represented by a single neuron if we allow an ad-
ditional linear post-processing. For example, one can easily see that min(a,b) =
b−max(0,b−a) and max(a,b) = a+max(0,b−a).

It turns out that these are the only “and”- and “or”-operations which can be thus
represented.

Definition 6. We say that a continuous monotonic associative “and”-operation
f&(a,b) can be computed by a single neuron with linear post-processing if we have

f&(a,b) = c0 + ca ·a+ cb ·b+ s(w0 +wa ·a+wb ·b). (17)

Definition 7. We say that a continuous monotonic associative “or”-operation
f∨(a,b) can be computed by a single neuron with linear post-processing if we have

f∨(a,b) = c0 + ca ·a+ cb ·b+ s(w0 +wa ·a+wb ·b). (18)

– 38 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

Theorem 3. The only “and”-operations that can be computed by a single neuron
with linear post-processing are max(0,a+b−1) and min(a,b). All activation func-
tions allowing such a computation are equivalent to the rectified linear function.

Theorem 4. The only “or”-operations that can be computed by a single neuron
with linear post-processing are min(a+b,1) and max(a,b). All activation functions
allowing such a computation are equivalent to the rectified linear function.

3.3 Proof of Theorems 3 and 4
First of all, let us somewhat simplify the expressions (17) and (18) for the corre-
sponding operation f (a,b).

We cannot have wa = wb = 0 because then, the function f (a,b) would be linear,
and it is easy to show that no linear function can satisfy all the requirements of an
“and”-operation or of an “or”-operation. Thus, either wa 6= 0 or wb 6= 0 (or both).

If wa = 0, then, due to commutativity of f (a,b), we can swap a and b and get an
expression with wa 6= 0. Thus, without losing generality, we can assume that wa 6= 0.

We can thus introduce an auxiliary function t(z) = c0 + s(w0 +wa · z). In terms of
this auxiliary function, formulas (17) and (18) take the form

f (a,b) = ca ·a+ cb ·b+ t(a+ k ·b), (19)

where k def
= wb/wa.

If k = 1, then the expression t(a+ k ·b) is symmetric with respect to a and b. Since
for both types of operations, the function f (a,b) is commutative, we thus conclude
that the difference

ca ·a+ cb ·b = f (a,b)− t(a+b) (20)

is also commutative. Therefore, ca = cb, hence the whole expression (19) depends
only on the sum a+ b, i.e., has the form F(a+ b) for some function F(z). This
means that each such function is computable by a 1-layer neural network, and all
“and”- and “or”-operations which can be thus represented have been described in
Theorems 1 and 2.

To complete the proof, it is therefore necessary to consider the case when k 6= 1, i.e.,
when the lines a+ k ·b = const are not parallel to the diagonal a = b of the square
[0,1]× [0,1]. Each line a+ k · b = const intersects the borderline of the square at
two points. On the borderline – i.e., when one of the values a and b is equal to
0 or to 1 – the value of an “and”- or “or”-operation is uniquely determined by the
corresponding Definition (Definition 1 or Definition 2). Since the function f (a,b) is
linear on this line, its values for all the points from this line are uniquely determined
by the values at these two borderline points. Thus, for each k, we uniquely determine
all the values f (a,b) for all the pairs (a,b).

– 39 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

One can check that the only case when the resulting function is commutative and
associative is the case k =−1, in which case we indeed get min(a,b) and max(a,b).
We can also easily check that in both case, the activation function t(z) is indeed
equivalent to the rectified linear function. The theorems are proven.

3.4 Remaining open problems
It is known (see, e.g., [6]) that functions represented as linear combinations of the
results of 1-neuron layer are universal approximators – i.e., for each continuous
function on a bounded domain and for each accuracy ε > 0, we can find a neural
network which computes the given function with the desired accuracy. In general,
the more accuracy we require, the more neurons we need. So, to achieve perfect
accuracy – i.e., exact computations – we will need potentially infinite number of
neurons.

Interestingly, for some “and”- and “or”-operations, we can have perfect accuracy
with a limited number of neurons: e.g., the operation a · b can be computed by a
2-neuron network, as

a ·b =
1
4
· (a+b)2− 1

4
· (a−b)2. (21)

The operation a+b−a ·b can be computed by a 3-neuron network:

a+b−a ·b = (a+b)− 1
4
· (a+b)2− 1

4
· (a−b)2. (22)

It would be interesting to describe all such “and”- and “or”-operations. Maybe a ·b
and a+b−a ·b are the only such operations?

4 Conclusions
We would like our computations to be fast and understandable. As we show in this
paper, the need for the computations to be fast naturally leads to neural networks,
and the need for the computations to be understandable – i.e., describable by words
from natural language – naturally invokes techniques relating imprecise natural-
language words with numerical recommendations – techniques of fuzzy logic. The
need to use both neural and fuzzy techniques necessitates analyzing when fuzzy
“and”- and “or”-operations – the main building blocks of fuzzy techniques – can be
implemented by the fastest possible (1-layer) neural network, and which activation
functions can be used for such an implementation.

Interestingly, the answer is that we need to use min, max, and related fuzzy op-
erations min(a+ b,1) and max(a+ b− 1,0) – which are indeed among the most
successfully used fuzzy techniques, and the corresponding activation function is the
rectified linear function – the activation function which is successfully used in deep
learning. These result provide a possible explanation of why neural networks that
use rectified linear activation function are so successful.

– 40 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

Acknowledgements
This work was supported in part by the grant TUDFO/47138-1/2019-ITM from the
Ministry of Technology and Innovation, Hungary, and by the US National Science
Foundation grants 1623190 (A Model of Change for Preparing a New Generation
for Professional Practice in Computer Science) and HRD-1242122 (Cyber-ShARE
Center of Excellence).

The authors are greatly thankful to the anonymous referees for their thorough read-
ing and valuable suggestions.

References
[1] N. Ádám, A. Baláž, E. Pietriková, E. Chovancová, and P. Fecil′ak: The im-

pact of data representations on hardware based MLP network implementa-
tion, Acta Polytechnica Hungarica, 2018, Vol. 15, No. 2, pp. 69–88.

[2] M. M. Afravi and V. Kreinovich: From fuzzy universal approximation to
fuzzy universal representation: it all depends on the continuum hypothesis,
Proceedings of the Joint 17th Congress of International Fuzzy Systems Asso-
ciation and 9th International Conference on Soft Computing and Intelligent
Systems IFSA-SCIS’2017, Otsu, Japan, June 27–30, 2017.

[3] M. Afravi and V. Kreinovich: Fuzzy systems are universal approximators for
random dependencies: a simplified proof, In: M. Ceberio and V. Kreinovich
(eds.): Decision Making under Constraints, Springer Verlag, Cham, Switzer-
land, 2020, pp. 1–5.

[4] C. Baral, O. Fuentes, and V. Kreinovich: Why deep neural networks: a pos-
sible theoretical explanation, In: M. Ceberio and V. Kreinovich (eds.):
Constraint Programming and Decision Making: Theory and Applications,
Springer Verlag, Berlin, Heidelberg, 2018, pp. 1–6.

[5] R. Belohlavek, J. W. Dauben, and G. J. Klir: Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[6] C. M. Bishop: Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[7] E. K. Blum and L. K. Li: Approximation theory and feedforward networks,
Neural Networks, 1991, Vol. 4, No. 4, pp. 511–515.

[8] J. L. Castro: Fuzzy logic controllers are universal approximators, IEEE
Transactions on Systems, Man, and Cybernetics, 1995, Vol. 25, pp. 629–635.

[9] Chiu-Hsiung Chen, Chang-Chih Chung, Fei Chao, Chih-Min Lin, and
I. J. Rudas: Intelligent robust control for uncertain nonlinear multivariable
systems using recurrent cerebellar model neural networks, Acta Polytechnica
Hungarica, 2015, Vol. 12, No. 5, pp. 7–33.

[10] J. L. Elman: Finding structure in time, Cognitive Science, 1990, Vol. 14,
pp. 179-211.

– 41 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

[11] I. Goodfellow, Y. Bengio, and A. Courville: Deep Leaning, MIT Press, Cam-
bridge, Massachusetts, 2016.

[12] D. Hilbert: Mathematical Problems, Bulletin of the American Mathematical
Society, 1902, Vol. 8, No. 10, pp. 437–479.

[13] J. J. Hopfield: Neural networks and physical systems with emergent collec-
tive computational abilities, Proceedings of the National Academy of Sci-
ences of the USA, 1992, Vol. 79, No. 8, pp. 2554–2558.

[14] E. P. Klement, L.T. Kóczy, and B. Moser: Are fuzzy systems universal
approximators?, International Journal of General Systems, 1999, Vol. 28,
No. 2–3, pp. 259–282.

[15] G. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[16] T. Kohonen: Self-organized formation of topologically correct feature maps,
Biological Cybernetics, 1982, Vol. 43, No. 1, pp. 59–69.

[17] A. N. Kolmogorov: On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addi-
tion, Dokl. Akad. Nauk. SSSR, 1957, Vol. 114, pp. 953–956 (in Russian).

[18] B. Kosko: Fuzzy systems as universal approximators, In: Proceedings of
the IEEE International Conference on Fuzzy Systems FUZZ-IEEE’92, San
Diego, California, 1992, pp. 1153–1162.

[19] V. Kreinovich: Arbitrary nonlinearity is sufficient to represent all functions
by neural networks: a theorem, Neural Networks, 1991, Vol. 4, 381–383.

[20] V. Kreinovich, Fundamental properties of pair-wise interactions naturally
lead to quarks and quark confinement: a theorem motivated by neural uni-
versal approximation results, In: M. Ceberio and V. Kreinovich (eds.): How
Uncertainty-Related Ideas Can Provide Theoretical Explanation for Empiri-
cal Dependencies, Springer, Cham, Switzerland, to appear.

[21] V. Kreinovich: From traditional neural networks to deep learning: towards
mathematical foundations of empirical successes, In: S. N. Shahbazova,
J. Kacprzyk, V. E. Balas, and V. Kreinovich (eds.): Proceedings of the World
Conference on Soft Computing, Baku, Azerbaijan, May 29–31, 2018.

[22] V. Kreinovich and O. Kosheleva: Optimization under uncertainty explains
empirical success of deep learning heuristics”, In: P. Pardalos, V. Rasskazova,
and M. N. Vrahatis (eds.): Black Box Optimization, Machine Learning and
No-Free Lunch Theorems, Springer, Cham, Switzerland, to appear.

[23] V. Kreinovich and O. Kosheleva: Deep learning (partly) demystified, Pro-
ceedings of the 4th International Conference on Intelligent Systems, Meta-
heuristics & Swarm Intelligence ISMSI’2020, Thimpu, Bhutan, April 18–19,
2020.

– 42 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

[24] V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen: Fuzzy rule based mod-
eling as a universal approximation tool, In: H. T. Nguyen and M. Sugeno
(eds.): Fuzzy Systems: Modeling and Control, Kluwer, Boston, MA, 1998,
pp. 135–195.

[25] V. Kreinovich, H. T. Nguyen, and Y. Yam: Fuzzy systems are universal ap-
proximators for a smooth function and its derivatives, International Journal
of Intelligent Systems, 2000, Vol. 15, No. 6, pp. 565–574.

[26] V. Kreinovich and O. Sirisaengtaksin: 3-layer neural networks are universal
approximators for functionals and for control strategies, Neural, Parallel, and
Scientific Computations, 1993, Vol. 1, pp. 325–346.

[27] V. Kreinovich and C. Stylios: Why Fuzzy Cognitive Maps are efficient, Inter-
national Journal of Computers, Communications, & Control, 2015, Vol. 10,
No. 6, pp. 825–833.

[28] V. Kůrková, Kolmogorov’s theorem and multilayer neural networks, Neural
Networks, 1992, Vol. 5, pp. 501-506.

[29] A. Lemos, V. Kreinovich, W. Caminhas, and F. Gomide: Universal approx-
imation with uninorm-based fuzzy neural networks, Proceedings of the 30th
Annual Conference of the North American Fuzzy Information Processing
Society NAFIPS’2011, El Paso, Texas, March 18–20, 2011.

[30] G. G. Lorentz: Approximation of Functions, Holt, Reinhard and Winston,
New York, 1965.

[31] G. G. Lorentz: The 13th problem of Hilbert, In: F. Browder (ed.): Mathemat-
ical Developments Arising from Hilbert’s Problems, American Mathematical
Society, Providence, Rhode Island, 1976, Vol. 2, pp. 419-430.

[32] R. Lovassy, L. T. Kóczy, and L. Gál: Function approximation performance
of fuzzy neural networks, Acta Polytechnica Hungarica, 2010, Vol. 7, No. 4,
pp. 25–38.

[33] B. B. Mandelbrot: The Fractal Geometry of Nature, Henry Holt and Com-
pany, New York, 1983.

[34] J. M. Mendel: Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[35] B. Moser: Sugeno controllers with a bounded number of rules are nowhere
dense, International Journal of General Systems, 1999, Vol. 28, No. 3,
pp. 269–277.

[36] M. Nakamura, R. Mines, and V. Kreinovich: Guaranteed intervals for Kol-
mogorov’s theorem (and their possible relation to neural networks), Interval
Computations, 1993, No. 3, pp. 183–199.

[37] H. T. Nguyen and V. Kreinovich: On approximations of controls by fuzzy
systems, Proceedings of the Fifth International Fuzzy Systems Association
World Congress IFSA’93, Seoul, Korea, July 1993, pp. 1414–1417.

– 43 –

Kevin Alvarez et al. “And”- and “Or”-Operations and Neural Networks

[38] H. T. Nguyen and V. Kreinovich: Kolmogorov’s Theorem and its impact
on soft computing, In: R. R. Yager and J. Kacprzyk (eds.), The Ordered
Weighted Averaging Operators: Theory and Applications, Kluwer, Boston,
MA, 1997, pp. 3–17.

[39] H. T. Nguyen, V. Kreinovich, and D. Sprecher: Normal forms for fuzzy
logic – an application of Kolmogorov’s theorem, International Journal on
Uncertainty, Fuzziness, and Knowledge-Based Systems, 1996, Vol. 4, No. 4,
pp. 331–349.

[40] H. T. Nguyen, V. Kreinovich, and O. Sirisaengtaksin: Fuzzy control as a
universal control tool, Fuzzy Sets and Systems, 1996, Vol. 80, No. 1, pp. 71–
86.

[41] H. T. Nguyen, V. Kreinovich, and P. Wojciechowski: Strict Archimedean
t-norms and t-conorms as universal approximators, International Journal of
Approximate Reasoning, 1998, Vol. 18, Nos. 3–4, pp. 239–249.

[42] H. T. Nguyen, C. L. Walker, and E. A. Walker: A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

[43] V. Novák, I. Perfilieva, and J. Močkoř: Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[44] I. Perfilieva and V. Kreinovich: A new universal approximation result for
fuzzy systems, which reflects CNF–DNF duality, International Journal of In-
telligent Systems, 2002, Vol. 17. No. 12, pp. 1121–1130.

[45] D. A. Sprecher: On the structure of continuous functions of several variables,
Transactions of the American Mathematical Society, 1965, Vol. 115, pp. 340–
355.

[46] M. H. Stone: A generalized Weierstrass approximation theorem, Mathemat-
ics Magazine, 1948, Vol. 21, pp. 167–184 and 237–254.

[47] D. Tikk: On nowhere denseness of certain fuzzy controllers containing prere-
stricted number of rules, Tatra Mountains Mathematical Publications, 1999,
Vol. 16, pp. 369–377.

[48] R. Trejo and V. Kreinovich: Complexity of collective decision making ex-
plained by neural network universal approximation theorem, In: G. Alefeld
and R. A. Trejo (eds.), Interval Computations and its Applications to Reason-
ing Under Uncertainty, Knowledge Representation, and Control Theory. Pro-
ceedings of MEXICON’98, Workshop on Interval Computations, 4th World
Congress on Expert Systems, México City, México, 1998.

[49] J. Vaščák and L. Madarász: Function approximation performance of fuzzy
neural networks, Acta Polytechnica Hungarica, 2010, Vol. 7, No. 3, pp. 109–
122.

[50] L.-X. Wang and J. M. Mendel: Fuzzy basis functions, universal approxi-
mation and orthogonal least squares learning, IEEE Transactions on Neural
Networks, 1992, Vol. 3, pp. 807–814.

– 44 –

Acta Polytechnica Hungarica Vol. 18, No. 2, 2021

[51] K. Weierstraß: Über continuirliche Functionen eines reellen Arguments,die
für keinen Werth des letzeren einen bestimmten Differentialquotienten be-
sitzen (On continuous functions of a real argument which possess a definite
derivative for no value of the argument), Königlich Preussichen Akademie
der Wissenschaften, 1872; reprinted in: Mathematische Werke von Karl
Weierstrass, Mayer & Mueller, Berlin, Germany, 1895, Vol. 2, pp. 71–74.

[52] K. Weierstraß, Über die analytische Darstellbarkeit sogenannter willkürlicher
Functionen einer reellen Veränderlichen, Sitzungsberichte der Akademie zu
Berlin, 1885, pp. 633–639 and 789–805.

[53] R. R. Yager and V. Kreinovich: Universal approximation theorem for
uninorm-based fuzzy systems modeling, Fuzzy Sets and Systems, 2003,
Vol. 140, No. 2, pp. 331–339.

[54] Y. Yam, H. T. Nguyen, and V. Kreinovich, Multi-resolution techniques in
the rules-based intelligent control systems: a universal approximation re-
sult, Proceedings of the 14th IEEE International Symposium on Intelligent
Control/Intelligent Systems and Semiotics ISIC/ISAS’99, Cambridge, Mas-
sachusetts, September 15–17, 1999, pp. 213–218.

[55] L. A. Zadeh: Fuzzy sets, Information and Control, 1965, Vol. 8, pp. 338–353.

– 45 –

