DOI QR코드

DOI QR Code

Synthesis and Thermal Cyclization of Aromatic Polyhydroxyamides(II) -Effect of Fluoro-substituents-

방향족 폴리히드록시아미드의 합성과 열적 고리화 거동(II) -플루오르 치환체의 영향-

  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Paik, Min Jung (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Kang, Chan Sol (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 지민호 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 백민정 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 강찬솔 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템 공학과)
  • Received : 2013.08.18
  • Accepted : 2013.09.30
  • Published : 2013.10.31

Abstract

Polyhydroxyamide (PHA) was synthesized via low-temperature solution polymerization of 3,3'-dihydroxybenzidine with isophthaloyl chloride, and the derivatives of PHA containing fluoro-substituents were investigated for exploring their potential application as new thermally stable polymer material. The structural properties, solubility, and thermal cyclization of the PHA and its derivatives were characterized using FT-IR, DSC, and TGA to derive the relationship between the structure of the PHA derivatives and the thermal properties and cyclization behavior of the polymer. The PHA derivatives containing fluoro-substituents were readily soluble in a variety of solvents without LiCl, whereas the pristine PHA was soluble only in the presence of LiCl. The DSC analyses under isothermal conditions showed that the PHA derivatives exhibited a faster cyclization rate than the pristine PHA at $220^{\circ}C$ and $250^{\circ}C$. In addition, the DSC and TGA results revealed that the PHA derivatives could be cyclized into the corresponding polybenzoxazoles at lower temperatures than the pristine PHA; this could be attributed to the lower thermal activation energy of the derivatives owing to the introduction of the fluoro-substituents.

Keywords

References

  1. 백두현, 이민호, "초고성능 PBO 섬유", Fiber Tech Ind, 2007, 11(4), 261-270.
  2. S. H. Lin, F. Li, S. Z. D. Cheng, and F. W. Harris, "Organo- Soluble Polyimides: Synthesis and Polymerization of 2,2'-Bis (trifluoromethyl)-4,4',5,5'-Biphenyltetracarboxylic Dianhydride", Macromolecules, 1998, 31(7), 2080-2086. https://doi.org/10.1021/ma971396a
  3. M. E. Hunsaker, G. E. Price, and S. J. Bai, "Processing, Structure and Mechanics of Fibres of Heteroaromatic Oxazole Polymers", Polymer, 1992, 33(10), 2128-2135. https://doi.org/10.1016/0032-3861(92)90879-2
  4. C. Gao and S. W. Kantor, "Synthesis of Precursor Flame Suppressing Polymers", Spring SPE Meeting, 1996, 54th(Vol. 3), 3072-3073.
  5. M. H. Jee, J. Y. Lee, and D. H. Baik, “Synthesis and Thermal Cyclization of Aromatic Polyhdroxuamies(I) -Effect of the Benzene Ring Substitution Structure-”, Text Sci Eng, 2012, 49(5), 324-330. https://doi.org/10.12772/TSE.2012.49.5.324
  6. H. Zhang, R. J. Farris, and P. R. Westmoreland, "Low Flammability and Decomposition Behavior of Poly(3,3'-dihydroxybiphenyl isophthalamide) and Its Derivatives", Macromolecules, 2003, 36(11), 3944-3954. https://doi.org/10.1021/ma021764x
  7. H. Hsiao and C. H. Yu, “Aromatic Polybenzoxazoles Bearing Ether and Isopropylidene or Hexafluoroisopropylidene Units in the Main Chain”, Macromol Chem Phys, 1998, 199(7), 1247-1253. https://doi.org/10.1002/(SICI)1521-3935(19980701)199:7<1247::AID-MACP1247>3.0.CO;2-Y
  8. S. H. Hsiao and L. R. Dai, "Synthesis and Properties of Novel Aromatic Poly(o-hydroxyamide)s and Polybenzoxazoles Based on the Bis(ether benzoyl chloride)s from Hydroquinone and Its Methyl-tert-Butyl-, and Phenyl-Substituted Derivatives", J Polym Sci Part A: Polym Chem, 1999, 37(3), 2129-2136. https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2129::AID-POLA28>3.0.CO;2-O
  9. E. S. Yoo, A. J. Garvin, R. J. Farris, and E. B. Coughlin, “Synthesis and Characterization of the Polyhydroxyamide/ Polymethoxyamide Family of Polymers”, High Perform Polym, 2003, 15(4), 519-535. https://doi.org/10.1177/09540083030154008
  10. S. H. Hsiao and Y. H. Huang, “A New Class of Aromatic Polybenzoxazoles Containing ortho-phenylenedioxy Groups”, Eur Polym J, 2004, 40(6), 1127-1135. https://doi.org/10.1016/j.eurpolymj.2004.01.011
  11. T. Miyazaki and M. Hasegawa, “Highly Tough and Highly Transparent Soluble Polybezoxazoles(II): Effect of Solfune Group”, High Perform Polym, 2009, 21(2), 219-244. https://doi.org/10.1177/0954008308090540
  12. J. H. Jang and R. J. Farris, “Characterization of Two Precursor Polyblends: Polyhydroxyamide and Poly(Amic Acid)”, Polym Eng Sci, 2000, 40(2), 320-329. https://doi.org/10.1002/pen.11165
  13. J. H. Jang, K. M. Park, and I. C. Lee, “Thermal Cyclohydration of Aromatic Precursor Polymers to Polybenzoxazole and Polyimide; Their Thermal and Mechanical Properties”, Polym Bull, 2000, 44(1), 63-69. https://doi.org/10.1007/s002890050574
  14. C. S. Kang, M. H. Jee, and D. H. Baik, “Effect of Wet- Spinning and Heat-Treatment on the Structure and Mechanical Properties of Polyhydroxyamide Fibers(I) -Coagulation Behavior at Various Coagulation Conditions”, Text Sci Eng, 2013, 50(4), 217-224. https://doi.org/10.12772/TSE.2013.50.217
  15. S. K. Park, S. H. Cho, and R. J. Farris, “Dry-jet Wet Spinning of Polyhydroxyamide Fibers”, Fiber Polym, 2000, 1(2), 92-96. https://doi.org/10.1007/BF02875191
  16. D. H. Baik and S. J. Im, “Preparation of Nanofibers Using Precursor Polymers to Polybenzoxazoles”, Text Sci Eng, 2006, 43(3), 114-120.
  17. S. L. C. Hsu, K. S. Lin, and C. Wang, “Preparation of Polybezoxazole Fibers via Electrospinning and Postspun Thermal Cyclization of Polyhydroxyamide”, J Polym Sci Part A: Polym Chem, 2008, 46(24), 8159-8169. https://doi.org/10.1002/pola.23113
  18. D. H. Baik and W. O. Lee, “A Study on the High Performance Nanocomposite Fibers Based on Polybenzoxazoles(I) -Synthesis and Characterization of Polyhydroxyamide-clay Nanocomposites-”, Text Sci Eng, 2005, 42(5), 296-301.
  19. J. S. Lee, M. H. Jee, M. H. Lee, and D. H. Baik, “Preparation and Characterization of Polyhydroxyamide/MWNT Nanocomposites”, Text Sci Eng, 2010, 47(1), 7-14.
  20. H. Wang and T. S. Chung, “The Evolution of Physicochemical and Gas Transport Properties of Thermally Rearranged Polyhdroxyamide (PHA)”, J Membr Sci, 2011, 385-386, 86-95. https://doi.org/10.1016/j.memsci.2011.09.023
  21. S. L. C. Hsu and W. C. Chen, “A Novel Positive Photosensitive Polybenzoxazole Precursor for Microelectronic Applications”, Polymer, 2002, 43(25), 6746-6750.
  22. Y. J. Kim, B. R. Einsla, C. N. Tchatchoua, and J. E. Mcgrath, “Synthesis of High Molecular Weight Polybenzoxazoles in Polyphosphoric Acid and Investigation of Their Hydrolytic Stability under Acidic Conditions”, High Perform Polym, 2005, 17(3), 377-401. https://doi.org/10.1177/0954008305055558
  23. D. H. Baik, H. Y. Kim, and S. W. Kantor, “Synthesis and Cyclization of Aromatic Polyhydroxyamides Containing Trifluoromethyl Groups”, Fiber Polym, 2002, 3(3), 91-96. https://doi.org/10.1007/BF02892623
  24. D. H. Baik, E. K. Kim, and M. K. Kim, “Praparation of New Heat-resistant Fiber Materials Using Polymeric Precursors to Polybenzoxazoles(I) -Synthesis and Thermal Cyclization of PHA Derivatives-”, Text Sci Eng, 2003, 40(1), 13-19.
  25. M. Liu, Y. Yang, T. Zhu, and Z. Liu, “Chemical Modification of Single-Walled Carbon Nanotubes with Peroxytrifluoroacetic Acid”, Carbon, 2005, 43(7), 1470-1478. https://doi.org/10.1016/j.carbon.2005.01.023
  26. J. K. Yoon, J. H. Lee, J. S. Kim, Y. H. Lee, D. J. Lee, and H. D. Kim, “Emulsion Polymerization and Surface Properties of Perfluoroalkylethyl Acrylate/Acrylate/Glycidyl Methacrylate Copolymer”, Clean Technol, 2012, 18(2), 170-176. https://doi.org/10.7464/ksct.2012.18.2.170
  27. D. S. Yoon, J. K. Choi, and B. W. Jo, “Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendent Groups”, Polymer(Korea), 2005, 29(5), 493-500.
  28. H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Anal Chem, 1957, 29(11), 1702-1706. https://doi.org/10.1021/ac60131a045

Cited by

  1. Synthesis and Thermal Cyclization of Fluorine-Containing Polyhydroxyamides vol.51, pp.5, 2014, https://doi.org/10.12772/TSE.2014.51.259
  2. Study on Polyhydroxyamide/Carbon Nanotube Nanocomposite Fibers vol.52, pp.6, 2015, https://doi.org/10.12772/TSE.2015.52.361
  3. Synthesis and thermal properties of polyhydroxyamide copolymer and its derivatives vol.17, pp.5, 2016, https://doi.org/10.1007/s12221-016-6207-3
  4. Thermal Cyclization Behavior of Polyhydroxyamide Copolymers vol.53, pp.5, 2016, https://doi.org/10.12772/TSE.2016.53.340
  5. Effects of Drawing and Heat-Treatment Conditions on the Structure and Mechanical Properties of Polyhydroxyamide and Polybenzoxazole Fibers vol.19, pp.8, 2018, https://doi.org/10.1007/s12221-018-8241-9