DOI QR코드

DOI QR Code

Liquid Metal Enabled Flexible Fiber Microelectrode for Dopamine Sensor Applications

액체금속을 활용한 플렉서블 섬유상 전극 제조 및 도파민 센서로의 응용

  • Lim, Taehwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Sohee (Department of Clothing and Textiles, Gyeongsang National University) ;
  • Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
  • 임태환 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 이소희 (경상국립대학교 자연과학대학 의류학과) ;
  • 여상영 (한국생산기술연구원 융합기술연구소 섬유연구부문)
  • Received : 2022.07.28
  • Accepted : 2022.08.16
  • Published : 2022.08.31

Abstract

Gallium-based liquid metals have gained significant attention as promising material platforms for flexible bioelectronics owing to their fluidic behavior but still metallic. However, low electrochemical stability owing to oxidation may limit the use of bioelectronics that typically operate under physiological conditions. Here, we developed a liquid metal core/polymer shell fiber platform for flexibility. Then, nanostructured conductive poly(3,4-ethylenedioxythiophene) (PEDOT) was encapsulated on the liquid metal surface to prevent oxidation. Mechanical property measurement demonstrated that the platform displayed high flexibility and low Young's modulus that could minimize the mechanical mismatch between the fiber platform and soft human tissues. PEDOT encapsulation on the liquid metal surface offered the fiber platform-based electrode considerably higher electrochemical properties, such as lower impedance and higher charge storage capacity. The improved electrochemical performance enables the liquid metal-based fiber electrode to be used for electrochemical dopamine (DA) monitoring. This study demonstrated that the PEDOT structured flexible electrode had a sensitivity of 0.218±0.022 μA/μM and a limit of detection of 150 nM. Finally, the electrode could effectively detect DA under a plethora of byproducts produced by human metabolism. All the results confirmed the flexibility and remarkable electrochemical properties of the prepared liquid metal-based electrode, opening numerous design opportunities for next-generation liquid metal-based bioelectronics.

Keywords

Acknowledgement

이 논문은 한국생산기술연구원의 지원을 받아 수행된 연구임(과제번호 EH220005).

References

  1. Z. Rao, F. Ershad, A. Almasri, L. Gonzalez, X. Wu, and C. Yu, "Soft Electronics for the Skin: From Health Monitors to Human-Machine Interfaces", Adv. Mater. Technol., 2020, 5, 2000233. https://doi.org/10.1002/admt.202000233
  2. C. Choi, Y. Lee, K. W. Cho, J. H. Koo, and D. H. Kim, "Wearable and Implantable Soft Bioelectronics Using Two- Dimensional Materials", Acc. Chem. Res., 2019, 52, 73-81. https://doi.org/10.1021/acs.accounts.8b00491
  3. R. Panhwar, N. Soni, A. Sikandar, A. Raza, K. C. Sun, I. A. Sahito, and S. H. Jeong, "Binder-free Graphene Printed Flexible and Conductive Cotton Fabric for E-textile Applications", Text. Sci. Eng., 2021, 58, 113-117.
  4. C. Wei, H. Fei, Y. Tian, Y. An, G. Zeng, J. Feng, and Y. Qian, "Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next- Generation Lithium-Ion Batteries", Small, 2019, 15, 1903214. https://doi.org/10.1002/smll.201903214
  5. Y. Ding, X. Guo, Y. Qian, L. Zhang, L. Xue, J. B. Goodenough, and G. Yu, "A Liquid-Metal-Enabled Versatile Organic Alkali- Ion Battery", Adv. Mater., 2019, 31, 1806956. https://doi.org/10.1002/adma.201806956
  6. M. Ku, J. Kim, J. E. Won, W. Kang, Y. G. Park, J. Park, J. H. Lee, J. Cheon, H. H. Lee, and J. U. Park, "Smart, Soft Contact Lens for Wireless Immunosensing of Cortisol", Sci. Adv., 2020, 6, eabb2891. https://doi.org/10.1126/sciadv.abb2891
  7. T. Lim, M. Kim, A. Akbarian, J. Kim, P. A. Tresco, and H. Zhang, "Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronics Applications", Adv. Healthcare Mater., 2022, 11, 2102382. https://doi.org/10.1002/adhm.202102382
  8. Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, and Z. Zheng, "Permeable Superelastic Liquid-metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics", Nat. Mater., 2021, 20, 859-868. https://doi.org/10.1038/s41563-020-00902-3
  9. J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment", ACS Appl. Mater. Interfaces, 2018, 10, 17448-17454. https://doi.org/10.1021/acsami.8b02320
  10. R. Guo and J. Liu, "Implantable Liquid Metal-based Flexible Neural Microelectrode Array and Its Application in Recovering Animal Locomotion Functions", J. Micromech. Microeng., 2017, 27, 104002. https://doi.org/10.1088/1361-6439/aa891c
  11. M. D. Dickey, "Stretchable and Soft Electronics Using Liquid Metals", Adv. Mater., 2017, 29, 1606425. https://doi.org/10.1002/adma.201606425
  12. T. Lim, T. A. Ring, and H. Zhang, "Chemical Analysis of the Gallium Surface in a Physiologic Buffer", Langmuir, 2022, 38, 6817-6825. https://doi.org/10.1021/acs.langmuir.1c03281
  13. T. Daeneke, K. Khoshmansh, N. Mahmood, I. A. de Castro, D. Esrafilzadeh, S. J. Barrow, M. D. Dickey, and K. Kalantarzadeh, "Liquid Metals: Fundamentals and Applications in Chemistry", Chem. Soc. Rev., 2018, 47, 4073-4111. https://doi.org/10.1039/C7CS00043J
  14. D. Morales, N. A. Stoute, Z. Yu, D. E. Aspnes, and M. D. Dickey, "Liquid Gallium and the Eutectic Gallium Indium (EGaIn) Alloy: Dielectric Functions from 1.24 to 3.1 eV by Electrochemical Reduction of Surface Oxides", Appl. Phys. Lett., 2016, 109, 091905. https://doi.org/10.1063/1.4961910
  15. S. Holcomb, M. Brothers, A. Diebold, W. Thatcher, D. Mast, C. Tabor, and J. Heikenfeld, "Oxide-free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils", Langmuir, 2016, 32, 12656-12663. https://doi.org/10.1021/acs.langmuir.6b03501
  16. J. H. So, H. J. Koo, M. D. Dickey, and O. D. Velev, "Ionic Current Rectification in Soft-matter Diodes with Liquid-metal Electrodes", Adv. Funct. Mater., 2012, 22, 625-631. https://doi.org/10.1002/adfm.201101967
  17. X. Wang, X. Zhang, L. Sun, D. Lee, S. Lee, M. Wang, J. Zhao, Y. Shao-Horn, M. Dinca, T. Palacios, and K. K. Gleason, "High Electrical Conductivity and Carrier Mobility in oCVD PEDOT Thin Films by Engineered Crystallization and Acid Treatment", Sci. Adv., 2018, 4, eaat5780. https://doi.org/10.1126/sciadv.aat5780
  18. M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, and J. Simonato, "Progress in Understanding Structure and Transport Properties of PEDOT-based Materials: A Critical Review", Prog. Mater. Sci., 2020, 108, 100616. https://doi.org/10.1016/j.pmatsci.2019.100616
  19. S. H. Cho, T. S. Kang, and J. Y. Lee, "Elastic Textile Fabric Composite with High Electrical Conductivity as a Strain Sensor for Large Deformation", Text. Sci. Eng., 2007, 44, 86-89.
  20. T. Lim and K. W. Oh, "Electrical Property of Polypyrrole/ MWCNT-g-PSSA Composite", Text Sci. Eng., 2011, 48, 6-13.
  21. S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, "Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene", J. Phys. Chem. C, 2010, 114, 14915-14921. https://doi.org/10.1021/jp1020593
  22. B. J. Venton and Q. Cao, "Fundamentals of Fast-scan Cyclic Voltammetry for Dopamine Detection", Analyst, 2020, 145, 1158-1168. https://doi.org/10.1039/C9AN01586H
  23. C. Xu, F. Wu, P. Yu, and L. Mao, "In vivo Electrochemical Sensors for Neurochemicals: Recent Update", ACS Sens., 2019, 4, 3102-3118. https://doi.org/10.1021/acssensors.9b01713
  24. K. O. Kim and G. J. Kim, "Amperometric Properties of Immobilized Glucose Oxidase on a Cellulose Nanomembrane Patch Sensor", Text. Sci. Eng., 2018, 55, 22-28.
  25. T. Lim and H. Zhang, "Multilayer Carbon Nanotube/gold Nanoparticle Composites on Gallium-based Liquid Metals for Electrochemical Biosensing", ACS Appl. Nano Mater., 2021, 4, 12690-12701. https://doi.org/10.1021/acsanm.1c03244
  26. T. Lim, S. Won, I. W. Nam, J. S. Choi, C. H. Kim, T. H. Kim, J. H. Kim, S. Y. Yeo, H. Zhang, and B. J. Yeang, "Gold Nanoparticle/carbon Fiber Hybrid Structure from the Ecofriendly and Energy-efficient Process for Electrochemical Biosensing", ACS Sustainable Chem. Eng., 2022, 10, 8815-8824. https://doi.org/10.1021/acssuschemeng.2c01556
  27. R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu, Z. Liu, T. Luo, S. Choi, K. Hippalgaonkar, M. P. de Boer, and S. Shen, "Crystalline Polymer Nanofibers with Ultra-high Strength and Thermal Conductivity", Nat. Commun., 2018, 9, 1664. https://doi.org/10.1038/s41467-018-03978-3
  28. T. Kida, K. Hamasaki, Y. Hiejima, S. Maeda, and K. Nitta, "Microscopic Origin of Elastic and Plastic Deformation in poly(ether-block-amide) Elastomers under Various Conditions", J. Soc. Rheology, Japan, 2020, 48, 153-160. https://doi.org/10.1678/rheology.48.153
  29. Y. Song, H. Yamamoto, and N. Nemoto, "Segmental Orientations and Deformation Mechanism of Poly(etherblock- amide) Films", Macromolecules, 2004, 37, 6219-6226. https://doi.org/10.1021/ma0400620
  30. N. Rahman, A. Isanasari, R. Anggraeni, S. Honggokusumo, M. Iguchi, T. Masuko, and K. Tashiro, "Modern Interpretation on the High-stretching of Natural Rubber Attained by the Classic 'Racking' Method", Polymer, 2003, 44, 283-288. https://doi.org/10.1016/S0032-3861(02)00767-X
  31. J. K. Keum, H. Jeon, H. H. Song, J. Choi, and Y. Son, "Orientation-induced Crystallization of Poly(ethylene terephthalate) Fiber with Controlled Microstructure", Polymer, 2008, 49, 4882-4888. https://doi.org/10.1016/j.polymer.2008.08.050
  32. S. Byun, J. Y. Sim, Z. Zhou, J. Lee, R. Qazi, M. C. Walicki, K. E. Parker, M. P. Haney, S. H. Choi, A. Shon, G. B. Gereau, J. Bilbily, S. Li, Y. Liu, W. Yeo, J. G. McCall, J. Xiao, and J. Jeong, "Mechanically Transformative Electronics, Sensors, and Implantable Devices", Sci. Adv., 2019, 5, eaay0418. https://doi.org/10.1126/sciadv.aay0418
  33. L. Luan, X. Wei, Z. Zhao, J. J. Siegel, O. Potnis, C. A. Tuppen, S. Lin, S. Kazmi, R. A. Fowler, S. Holloway, A. K. Dunn, R. A. Chitwood, and C. Xie, "Ultraflexible Nanoelectronic Probes form Reliable, Glial Scar-free Neural Integration", Sci. Adv., 2017, 3, e1601966. https://doi.org/10.1126/sciadv.1601966
  34. D. Kim, P. Thissen, G. Viner, D. Lee, W. Choi, Y. J. Chabal, and J. B. Lee, "Recovery of Nonwetting Characteristics by Surface Modification of Gallium-based Liquid Metal Droplets Using Hydrochloric Acid Vapor", ACS Appl. Mater. Interfaces, 2013, 5, 179-185. https://doi.org/10.1021/am302357t
  35. E. P. Randviir and C. E. Banks, "Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications", Anal. Methods, 2013, 5, 1098-1115. https://doi.org/10.1039/c3ay26476a
  36. M. Fazel, H. R. Salimijazi, and M. Shamanian, "Improvement of Corrosion and Tribocorrosion Behavior of Pure Titanium by Subzero Anodic Spark Oxidation", ACS Appl. Mater. Interfaces, 2018, 10, 15281-15287. https://doi.org/10.1021/acsami.8b02331
  37. T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L. Smith, J. Lahann, N. A. Kotov, and D. R. Kipke, "Ultrasmall Implantable Composite Microelectrodes with Bioactive Surfaces for Chronic Neural Interfaces", Nat. Mater., 2012, 11, 1065-1073. https://doi.org/10.1038/nmat3468
  38. H. Zhang, J. Shih, J. Zhu, and N. A. Kotov, "Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Device", Nano Lett., 2012, 12, 3391-3398. https://doi.org/10.1021/nl3015632
  39. Y. Si, Y. E. Park, J. E. Lee, and H. J. Lee, "Nanocomposites of poly(L-methionine), Carbon Nanotube-graphene Complexes and Au Nanoparticles on Screen Printed Carbon Electrodes for Electrochemical Analyses of Dopamine and Uric Acid in Human Urine Solutions", Analyst, 2020, 145, 3656-3665. https://doi.org/10.1039/C9AN02638J
  40. M. Hsu, Y. Chen, C. Lee, and H. Chiu, "Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors", ACS Appl. Mater. Interfaces, 2012, 4, 5570-5575. https://doi.org/10.1021/am301452b