Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T06:53:38.349Z Has data issue: false hasContentIssue false

Differential Thermal Analysis of Clays and Carbonates

Published online by Cambridge University Press:  01 January 2024

Richards A. Rowland*
Affiliation:
Exploration and Production Technical Division, Shell Oil Company, Houston 25, Texas, USA

Abstract

Differential thermal analysis (DTA) began soon after the development of the thermocouple. It has progressed through the systematic development of better equipment and the cataloguing of typical DTA curves for a variety of materials until good technique now requires control of the composition and pressure of the furnace atmosphere as well as consideration of the thermodynamics and kinetics of the reactions involved. Although differential thermal analyses have been made for many materials, the major applications have been concerned with clay and carbonate minerals.

In DTA curves for clay minerals the low-temperature endothermic loop associated with the loss of water, and the high-temperature exothermic loop accompanying the formation of new compounds, are changed in shape, temperature, and intensity by the kind of exchange cations. The midtemperature-range endothermic loop has a temperature dependence on the partial pressure of water in the furnace atmosphere.

For the anhydrous normal carbonates the dissociation temperature and its dependence on the partial pressvire of CO2 are in the decreasing order Ca, Mg, Mn, Fe, and Zn. The lower temperature loop of dolomite, the reaction for which must be preceded by an internal rearrangement, is independent of the pressure of CO2 but may be shifted to a lower temperature by prolonged fine grinding which accomplishes a similar rearrangement.

Type
Part III—Methods of Identifying Clays and the Interpretation of Results
Copyright
© Clay Minerals Society 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Publication No. 25, Exploration and Production Technical Division, Shell Oil Co., Houston, Texas.

References

Selected References Compiled by Frank J. Sans

Agafanov, V Jourausky, G, The thermal analysis of the soils of Tunisia Pedology, Acad. Sci. Paris, Comptes rendus 1934 198 1356–58.Google Scholar
Agatonoff, V, Mineralogical study of soil 3d Internat. Cong. Soil Sci. Trans. 1935 3 7478.Google Scholar
Ahrens, P L, Differential thermal analysis; a conventional method 4th Internat. Cong. Soil Sci. Trans. 1950 4 2627.Google Scholar
Alexander, L T Hendricks, S B Nelson, R A, Minerals present in soil colloids; II. Estimation in some representative soils Soil Sci. 1939 48 273279.CrossRefGoogle Scholar
Alexander, L T Hendricks, S B Faust, G T, Occurrence of gibbsite in some soil-forming materials Soil Sci. Soc 1941 6 5257.CrossRefGoogle Scholar
Allaway, W H, Differential thermal analyses of clays treated with organic cations as an aid in the study of soil colloids Soil Sci. Soc. America Proc 1948 13 183188.CrossRefGoogle Scholar
Asada, Y, Alunite; VIII, Mechanism of thermal decomposition of alunite Inst. Phys. Chem. Research (Tokyo) Bull. 1940 19 976991.Google Scholar
Ashley, H E, The decomposition of clays, and the utilization of smelter and other smoke in preparing sulfates from clays Ind. Eng. Chemistry Jour. 1911 3 9194.CrossRefGoogle Scholar
Bailly, F H, Thermal differential curves reflect subsurface geology World Oil 1952 134 77.Google Scholar
Balandin, A A Patrikeev, V V, Differential thermocouple method in contact catalysis Acta Physiocochim. (USSR) 1944 19 576591.Google Scholar
Balandin, A A Patrikeev, V V, Differential thermocouple in heterogeneous catalysis Jour. Gen. Chemistry (USSR) 1944 14 5769.Google Scholar
Barshad, I, Vermiculite and its relation to biotite as revealed by base-exchange reactions. X-ray, differential thermal curves, and water content Am. Mineralogist 1948 33 655678.Google Scholar
Barshad, I, The effect of the interlayer cations on the expansion of the mica type of crystal lattice Am. Mineralogist 1950 35 225239.Google Scholar
Barshad, I, Temperature and heat of reaction calibration of the differential thermal analysis apparatus Am. Mineralogist 1952 37 667695.Google Scholar
Beck, C W, An improved method of differential thermal analysis and its use in the study of natural carbonates 1946.Google Scholar
Beck, C W, An amplifier for differential thermal analysis Am. Mineralogist 1950 35 508524.Google Scholar
Beck, C W, Differential thermal analysis curves of carbonate minerals Am. Mineralogist 1950 35 9851013.Google Scholar
Beck, W R, Crystallographic inversions of the aluminum orthophosphate polymorphs and their relation to those of silica Am. Ceramic Soc. Jour. 1949 32 147151.CrossRefGoogle Scholar
Belyankin, D S Deodot’ev, K M, The heating curve of kaolin in a new light Doklady Akad. Xauk. (USSR) 1949 65 357360.Google Scholar
Berg, L G, Influence of salt admixtures upon dissociation of dolomite Dokladv Acad. Sci. (USSR) 1943 38 2427.Google Scholar
Berg, L. G., Nikolaieve, V. I., and Rode, E. Y., 1944, Thermographia: Acad. Sci. (USSR), v. 25.Google Scholar
Berg, L G, On area measurements in thermograms for quantitative estimations and the determination of heats of reaction Doklady Acad. Sci. (USSR) 1945 49 648651.Google Scholar
Berg, L G Rassonskaya, I S, Rapid thermal analysis Doklady Akad. Nauk. (USSR) 1950 73 113115.Google Scholar
Berg, L G Rassonskaya, I S, Thermographic analysis under elevated pressures Doklady Akad. Nauk. (USSR) 1951 81 855858.Google Scholar
Berkelhamer, L H, Differential thermal analysis of quartz U. S. Bur. Mines Rept. Inv. 3763 1944.Google Scholar
Berkelhamer, L H, An apparatus for differential thermal analysis U. S. Bur. Mines, Tech. Paper 664 1945 3855.Google Scholar
Berkelhamer, L H Speil, S, Differential thermal analysis Mine and Quarry Eng. 1945 10 221225.Google Scholar
Berkelhamer, L H Speil, S, II. Differential thermal analysis Mine and Quarry Eng. 1945 10 273279.Google Scholar
Bradley, W F Grim, R E, Colloid properties of layer silicates Jour. Phys. and Colloid Chemistry 1948 52 14041413.CrossRefGoogle ScholarPubMed
Bradley, W F Grim, R E, High temperature thermal effects of clay and related materials Am. Mineralogist 1951 36 182201.Google Scholar
Bradley, W F, The alternating layer sequence of rectorite Am. Mineralogist 1952 35 78 590596.Google Scholar
Bradley, W F Burst, J F Graf, D L, The crystal chemistry and differential thermal effects of dolomite Am. Mineralogist 1953 .38 207217.Google Scholar
Bramao, L Cady, J G Hendricks, S B Swerdlow, M, Criteria for the characterization of kaolinite, halloysite, and a related mineral in clays and soils Soil Sci. 1952 73 273287.CrossRefGoogle Scholar
Burgess, G K, On methods of obtaining cooling curves Electro-chem. Metal Ind. 1908 6 366371.Google Scholar
Burgess, G K, Methods of obtaining cooling curves U. S. Bur. Standards, Teeh. News Bull. 1908 5 199225.CrossRefGoogle Scholar
Caillere, S, Study of the thermal dissociation of serpentine minerals Acad. Sci. Paris, Comptes rendus 1933 196 628630.Google Scholar
Caillere, S, Observation of the chemical composition of palygorskites Acad. Sci. Paris, Comptes rendus 1934 198 17951798.Google Scholar
Caillere, S, Study of the serpentine minerals Soc. franc. Mineralogie Bull. 1936 59 163326.Google Scholar
Caillere, S Henin, S, Differential thermal analysis of kaolinite Acad. Sci. Paris Comptes rendus 1939 209 684686.Google Scholar
Caillere, S Henin, S, New observations of faratsihite Acad. Sci. Paris Comptes rendus 1944 219 485489.Google Scholar
Caillere, S Henin, S, The origin of some anomalies presented by the thermal curves of certain montmorillonites Acad. Sci. Paris Comptes rendus 1944 219 685686.Google Scholar
Caillere, S Henin, S Ture, L, Investigations in differential thermal analysis of clays—significance and specificity of the phenomenon of recrystallization Acad. Sci. Paris Comptes rendus 1946 223 383384.Google Scholar
Caillere, S Henin, S, The application of differential thermal analysis to the study of the clay minerals found in soils Ann. Agron. 1947 17 2372.Google Scholar
Caillere, S Guennelon, R Henin, S, Thermal behavior of some phyllites at 14 angstrom units Acad. Sci. Paris Comptes rendus 1949 228 933935.Google Scholar
Caillere, S Henin, S Esquevin, J, The hydration of certain phyllitic minerals—metahalloysite Acad. Sci. Paris Comptes rendus 1950 230 11901192.Google Scholar
Caillere, S Henin, S, Observations on the chlorites of iron ores Clay Min. Bull. 1951 5 134138.CrossRefGoogle Scholar
Caillere, S Henin, S, The properties and identification of saponite (bowlingite) Clay Min. Bull. 1951 5 138145.CrossRefGoogle Scholar
Callaghan, E., 1948. Endellite deposits in Gardner mine ridge, ai]Lawrence County, Indiana: Indiana Div. Geology Bull. 1, 47 pp.Google Scholar
Chiang, Y Smothers, W J, Differential thermal ai]analysis in the general chemistry laboratory Jour. Chem. Ed. 1952 29 308309.CrossRefGoogle Scholar
Chukhrov, F V, Beudantite from the Kazakhstan steppe Doklady Akad. Nauk. (USSR) 1950 72 115117.Google Scholar
Chukhrov, F V Anosov, F Y, Medmontite, a copper-bearing montmorillonite mineral Zapiski Vsesoyuz. Mineral. Obshchcstva 1950 79 2327.Google Scholar
Chukhrov, P V Anosov, F Y, On the nature of chrysocolla Mem. Soc. Russe Min. 1950 79 127136.Google Scholar
Colin, W H, The problem of heat economy in the ceramic industry Am. Ceramic Soc. Jour. 1924 7 475488.Google Scholar
Collini, B, The mineralogieal composition of our (Swedish) Quaternary clays Geol. Foren. i Stockholm Forh. 1950 72 192206.CrossRefGoogle Scholar
Cuthbert, F L, Clay minerals in Lake Erie sediments Am. Mineralogist 1944 29 378388.Google Scholar
Cuthbert, F L, Differential thermal analysis of New Jersey ai]clay New Jersey Dept. Conservation, Misc. Geol. Paper 1946.Google Scholar
Cuthbert, F L Rowland, R A, Differential thermal analysis of some carbonate minerals Am. Mineralogist 1947 32 111116.Google Scholar
Dean, L A, Differential thermal analysis of Hawaiian soils Soil Sci. 1947 63 95105.CrossRefGoogle Scholar
Dennis, T W Hunt, J M, Application of certain instrumental methods on production research World Oil 1949 129 152154.Google Scholar
Dubois, P, Thermal balance analyzer with photo-recorder Soc. Chem. France Bull. 1936 3 11781181.Google Scholar
Efremov, N E, The problem of classification of serpentine minerals by the method of thermal analysis Acad. Sci. USSR, Comptes rendus 1940 28 442445.Google Scholar
Bwell, R H Bunting, E N Geller, R F, Thermal decomposition of talc U. S. Bur, Standards, Jour. Research 1936 15 551556.Google Scholar
Faust, G T, The differentiation of magnesite from dolomite in concentrates and tailings Econ. Geology 1944 39 142151.CrossRefGoogle Scholar
Faust, G T, Thermal analysis of quartz and its use in calibration in thermal analysis studies Am. Mineralogist 1948 33 337345.Google Scholar
Faust, G T, Dedolomitization and its relation to a possible derivation of a magnesium-rich hydrothermal solution Am. Mineralogist 1949 34 789823.Google Scholar
Faust, G T, Differentiation of aragonite from calcite by differential thermal analysis Science, new ser. 1949 110 402403.Google ScholarPubMed
Faust, G T, Thermal analysis studies on carbonates; I. Aragonite and calcite Am. Mineralogist 1950 35 207224.Google Scholar
Faust, G T, Thermal analysis and X-ray studies of sau-conite and some zinc minerals of the same paragenetic association Am. Mineralogist 1951 36 795823.Google Scholar
Fedot’eo, K N, Modern methods of thermal analysis. A method for registering heating curves Trudy Tret’ego Sove-schaniya Eksptl. mineral i Petrog. Inst. Geo. Nauk 1940 8394.Google Scholar
Fenner, C N, Stability relations of silica minerals Am. Jour. Sci. 1913 36 331384.CrossRefGoogle Scholar
Ferrandis, V A, Differential thermal analysis of some Spanish clays and kaolins Anales edafol. v fisiol. vegetal (Madrid) 1949 8 3358.Google Scholar
Fink, W L Van Horn, K R Pafour, H A, Thermal decomposition of alunite Ind. Eng. Chem. 1931 23 1248–50.CrossRefGoogle Scholar
Franzen, P Van Voorthuysen, J J B, Synthesis of nickel hvdrosilieates 4th Int. Cong. Soil Sci. Trans. 1950 3 3437.Google Scholar
Frederickson, A J, Differential thermal curve of siderite Am. Mineralogist 1948 33 372374.Google Scholar
Frueh, A J Jr., Disorder in the mineral bornite, Cu5FeS4 Am. Mineralogist 1950 35 185192.Google Scholar
Gad, G M, Thermochemical changes in alunite and alunitic clays Am. Ceramic Soc. Jour. 1950 33 208210.CrossRefGoogle Scholar
Gilard, P Jr., Several particular aspects of the treatment of kaolin and metakaolin in autoclave COBEA 1950.Google Scholar
Ginzburg, A I, Kruzhanovskite, a new phosphate mineral Doklady Akad. Nauk. (USSR) 1950 72 763766.Google Scholar
Gorbonov, N O Shurygina, E A, Thermal curves of minerals encountered in soils and rocks Pochvovedenie (pedology) (USSR) 1950 367373.Google Scholar
Graf, D L, Preliminary report on the variations in differential thermal curves of low-iron dolomites Am. Mineralogist 1952 37 127.Google Scholar
Granger, A, Thermal analysis of clay Ceramique 1934 37 58.Google Scholar
Granquist, W T Amero, R C, Low temperature nitrogen adsorption studies on attapulgite (Floridin) Am. Chem. Soc. Jour. 1948 70 3265.CrossRefGoogle ScholarPubMed
Griffiths, J C, Clay research and oil development problems Jour. Inst. Pet. 1946 32 265 1831.Google Scholar
Grim, R E Bradley, W F, Investigation of effect of heat on clay minerals, illite and montmorillonite Am. Ceramic Soc. Jour. 1940 23 242248.CrossRefGoogle Scholar
Grim, R E, Modern concepts of clay minerals Jour. Geology 1942 50 225275.CrossRefGoogle Scholar
Grim, R E Rowland, R A, Differential thermal analysis of clay minerals and other hydrous materials Am. Mineralogist 1942 27 746761.Google Scholar
Grim, R E Rowland, R A, Differential thermal analysis of clays and shales, control and prospecting method Am. Ceramic Soc. Jour. 1944 27 6576.CrossRefGoogle Scholar
Grim, R E Machiu, J S Bradley, W F, Amenability of various types of clay minerals to alumina extraction by the lime sinter and lime soda sinter processes Illinois Geol. Survey Bull. 1945 69 977.Google Scholar
Grim, R E, Differential thermal curves of prepared mixtures of clay minerals Am. Mineralogist 1947 32 498501.Google Scholar
Grim, R E Bradley, W F, Rehydration and dehydration of the clay minerals Am. Mineralogist 1948 33 5059.Google Scholar
Grim, R E Dietz, R S Bradley, W F, Clay mineral composition of some sediments from the Pacific Ocean off the California Coast and the Gulf of California Geol. Soc. America Bull. 1949 60 17851808.CrossRefGoogle Scholar
Grimshaw, R W Roberts, A L, Study of the clay quartz system—estimation of quartz by thermal methods Gas Research Board, Communication 1944 19 3138.Google Scholar
Grimshaw, R W Heaton, E Roberts, A L, Constitution of refractory clays; II. Thermal analysis methods British Ceramic Soc. Trans. 1945 44 6 7692.Google Scholar
Grimshaw, R W Roberts, A L, Study of the clay quartz system; II. Thermal analysis methods—experiments with tridymite and cristobalite Gas Research Board, Communication 1946 25 5862.Google Scholar
Grimshaw, R W Roberts, A L, Study of the clay quartz system; IV. Extension of the thermal analysis method to quartzite rocks Gas Research Board, Communication 1948 41 21–6.Google Scholar
Grimshaw, R W Westerman, A Roberts, A L, A symposium on silica inversions; I. Thermal effects accompanying the inversion of silica British Ceramic Soc. Trans. 1948 47 269276.Google Scholar
Gruver, R M, Precision method of thermal analysis Am. Ceramic Soc. Jour. 1948 31 323328.CrossRefGoogle Scholar
Gruver, R M Henry, B C Heystek, H, Suppression of thermal reactions in kaolinite Am. Mineralogist 1949 34 869873.Google Scholar
Gruver, R M, Differential thermal analysis studies of ceramic materials; I. Characteristic heat effects of some carbonates Am. Ceramic Soc. Jour. 1950 33 96101.CrossRefGoogle Scholar
Gruver, R M, Differential thermal analysis studies of ceramic materials; II. Transition of aragonite to calcite Am. Ceramic Soc. Jour. 1950 33 171174.CrossRefGoogle Scholar
Gruver, R M Henry, E C, Differential thermal analysic, a useful tool in ceramic research Pennsylvania State College, Mineral Inds. 1950 20 34.Google Scholar
Gruver, R M, Differential thermal analysis studies of ceramic materials: III. Characteristic heat effects of some sulfates Am. Ceramic Soc. Jour. 1951 34 353357.CrossRefGoogle Scholar
Haffray, J Yiloteau, J, The thermal and dilatometric analvsis of chromic oxide Acad. Sci. Paris. Comptes rendus 1948 220 17011702.Google Scholar
Hall, J L, Secondary expansion of high alumina refractories Am. Ceramic Soc. Jour. 3941 24 349356.CrossRefGoogle Scholar
Harman, C G Fraulini, F, Properties of kaolinite as a function of its particle size Am. Ceramic Soc. Jour. 1940 23 9 252359.CrossRefGoogle Scholar
Harman, C G Parmalee, C W, Testing and classification of ballclays; Thermal history Am. Ceramic Soc., Bull. 1942 21 11 283–86.Google Scholar
Hattiangdi, G S Void, M J Void, R D, differential thermal analysis of metal soaps Intl. Eng. Chem. 1949 41 23202324.Google Scholar
Haul, R A W Heystek, H, Differential thermal analysis of the dolomite decomposition Am. Mineralogist 1952 37 166180.Google Scholar
Hedyall, J A Lindner, R Hartler, X, A thermal-analysis study of the crystallographic transition of silver sulfate Acta Chem. Scand. 1950 4 10991108.Google Scholar
Hendricks, S R Alexander, L T, Minerals present in soil colloids; I. Description and methods for identification Soil Sci. 1939 48 257271.CrossRefGoogle Scholar
Hendricks, S B Alexander, L T, Semiquantitative estimation of montmorillonite in clays Soil Sci. Soc. America Proc 1940 5 9599.CrossRefGoogle Scholar
Hendricks, S B Nelson, R A Alexander, L T, Hydration mechanism of the clay mineral montmorillonite saturated with various cations Am. Chem. Soc. Jour. 1940 62 14571464.CrossRefGoogle Scholar
Hendricks, S B, Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon absorption due to van der Waal’s forces Jour. Phys. Chemistry 1941 45 6581.CrossRefGoogle Scholar
Hendricks, S B Goldich, S S Nelson, R A, A portable differential thermal analysis unit for bauxite exploration Econ. Geology 1946 41 6476.CrossRefGoogle Scholar
Herold, P Planje, T J, Modified differential thermal analysis apparatus Jour. Am. Ceramic Soc 1948 31 2022.CrossRefGoogle Scholar
Heystek, R, Differential thermal analysis of gangue minerals in chrome oven Am. Ceramic Soc. Bull. 1952 31 133138.Google Scholar
Hill, W L Arminger, W H Gooch, S D, Some properties of pseudowavellite from Florida Min. Eng. 1950 187 699702.Google Scholar
Hollings, H Cobb, J W, Thermal phenomena in carbonization J. Gas Lighting 1915 126 917–24.Google Scholar
Hollings, H Cobb, J W, Thermal study of the carbonization process Chem. Soc. Jour. 1915 107 11061115.CrossRefGoogle Scholar
Honeyhorne, D B, The clay minerals in the Keuper marl Clay Min. Bull. 1951 5 150157.CrossRefGoogle Scholar
HoukLsworth, H S Cobb, J W, Behavior of fireclays, bauxites, etc., on heating British Ceramic Soc. Trans. 1922 22 111137.Google Scholar
Howie, T W Lakin, J R, A note on the application of the differential thermal method to some basic refractory materials British Ceramic Soc. Trans. 1947 46 1422.Google Scholar
Hummel, F A, Properties of some substances isostructural with silica Am. Ceram. Soc. Jour. 1949 32 320326.CrossRefGoogle Scholar
Hurlbut, C S Jr., Artinite from Liming, Nevada Am. Minerologist 1946 31 365369.Google Scholar
Insley, H Ewell, R H, Thermal behavior of the kaolin minerals U. S. Bur. Standards, Jour. Research 1935 14 615627.CrossRefGoogle Scholar
Ivanova, V P, On the mineralogy of hydrated ferrlalu-mosilicates Acad. Sci. (USSR) 1946 93103.Google Scholar
Ivanova, V P Tatarskii, V B, Thermograms of mixtures of dolomite and kaolin Dokladv Akad. Nauk. (USSR) 1950 73 341343.Google Scholar
Jaffray, J, The investigation of higher order transformations by thermal analysis Jour. Recherches centr. Nat’l Recherche sci. 1947 153163.Google Scholar
Jeffries, C D, Quantitative approach to the study of thermal characteristics of clays Soil Sci. Soc. America Proc 1944 9 8691.CrossRefGoogle Scholar
JohnsoB, A L, Surface area and its effect on exchange capacity of montmorillonite Am. Ceramic Soc. Jour. 1949 32 210214.CrossRefGoogle Scholar
Jourdain, A, Studies of the constituents of refractory clays by means of thermal analysis Ceramique 1937 40 135141.Google Scholar
Kagan, T B Bashkirov, A N, Use of the differential thermocouple for kinetic measurements Izvest. Akad. Nauk. (USSR), Otdel, Tekh. Nauk. 1948 349358.Google Scholar
Kauffman, A J Jr., Differential thermal analysis World Oil 1948 128 3 118.Google Scholar
Kauffman, A J Jr., Differential thermal analysis as applied to the lime-soda sinter process U. S. Bur. Mines Rept. Inv. 1949 4585.Google Scholar
Kauffman, A J Jr. Dilling, E D, Differential thermal curves of certain hydrous and anhydrous minerals, with a description of the apparatus used Econ. Geology 1950 45 222244.CrossRefGoogle Scholar
Kazakov, A V Andrianov, K S, Methods of thermal analysis Acad. V. I. Aernadskomu k Pyatides-syatiletiyu Nauch. Devatelnosti 1936 2 833858.Google Scholar
Keller, W D Westcott, J F, Differential thermal analysis of some Missouri fireclays Am. Ceramic Soc. Jour. 1948 31 100105.CrossRefGoogle Scholar
Kelley, W P Page, J B, Criteria for the identification of the constituents of soil colloids Soil Sci. Soc. America Proc 1942 7 175181.CrossRefGoogle Scholar
Kerr, P F Kulp, J L, Differential thermal analysis of siderite Am. Mineralogist 1947 32 678680.Google Scholar
Kerr, P F Kulp, J L, Multiple differential thermal analysis Am. Mineralogist 1948 33 387419.Google Scholar
Kerr, P. F., Kulp, J. L., and Hamilton, P. K., 1949, Differential thermal analysis of reference clay mineral specimens: API Proj. 49, Prelim. Rept. 3, Columbia Univ.Google Scholar
Kerr, P F Holland, H D, Differential thermal analysis of davidite Am. Mineralogist 1951 36 563573.Google Scholar
Kindy, V A Okorokov, S D Khodikel, E P, The use of the method of thermal analysis Tsement 1939 6 7 3237.Google Scholar
Kivoura, R., and Sata, T., 1950, The quantitative analysis of the CaCO3 — Ca(OH)2 —Mg(OH)2 system by differential thermal analysis: Ceramic Assoc. Japan Jour., v. 58.Google Scholar
Knizek, J O Fetter, H, Properties of natural alunitic clays Am. Ceramic Soc. Jour. 1946 29 308313.CrossRefGoogle Scholar
Knizek, J O Fetter, H, Alunite and clays British Ceramic Soc. Trans. 1947 46 2246.Google Scholar
Kournakov, N S Tchernick, V V, Physical-chemical investigation of several hydrated iron oxides and clay silicates Soc Russ. Mineral, Mem. 1928 LVII 6273.Google Scholar
Kracek, F C, The polymorphism of sodium sulfate; I. Thermal analysis Jour. Phys. Chemistry 1929 33 12811308.CrossRefGoogle Scholar
Kracek, F C Bowen, N L Morey, G W, The system; potassium metasilieate-silica Jour. Phys. Chemistry 1929 33 18571879.CrossRefGoogle Scholar
Kracek, F C, Phase relations in the system sulfur-silver and the transitions in silver sulfide Am. Geophysical Union Trans. 1946 27 364374.Google Scholar
Kulp, J L Kerr, P F, Multiple thermal analysis Science (new ser.) 1947 105 413414.CrossRefGoogle Scholar
Kulp, J L Wright, H D Holmes, R J, Thermal study of rhodochrosite Am. Mineralogist 1949 34 195219.Google Scholar
Kulp, J L Kerr, P F, Improved differential thermal apparatus Am. Mineralogist 1949 34 839845.Google Scholar
Kulp, J L Adler, H H, Thermal study of jarosite Am. Jour. Sci. 1950 248 475487.CrossRefGoogle Scholar
Kulp, J L Trites, A F, Differential thermal analysis of natural hydrous ferric oxides Am. Mineralogist 1951 36 2345.Google Scholar
Kulp, J L Kent, P Kerr, P F, Thermal study of the Ca-Mg-Pe carbonate minerals Am. Mineralogist 1951 36 643671.Google Scholar
Kumanin, K G Kalenen, N S, The effect of some experimental factors on the geometrical elements of heating curves Jour. Phys. Chem. (USSR) 1936 7 405417.Google Scholar
Kurnakov, N S Uraxov, G G, Heating curves of Tichvinski bauxites Ann. Inst. Phys. Chem. Anal. Leningrad 1924 2 495496.Google Scholar
Kurnakov, N S Uraxov, G G, Thermal analysis of clays and bauxites Ann. Inst. Phys. Chem. Anal. Leningrad 1924 2 496498.Google Scholar
Kurylenke, C, Thermal analysis of several tourmalines Soc. Franc, mineral. Bull. 1950 73 4954.Google Scholar
Laird, J S Geller, R F, Rehydration of calcined clay Am. Ceramic Soc. Jour. 1919 2 10 828832.CrossRefGoogle Scholar
Lazarenko, E K, Minernlogical characteristics of donbas-site Doklady Akad. Nauk. (USSR) 1950 72 771774.Google Scholar
Le Chatelier, H, The constitution of clay Zeitschr. physik. Chem. 1887 1 396.Google Scholar
Le Chatelier, H, The action of heat on clays Soc. Franc. Mineral. Bull. 1887 10 204211.Google Scholar
Leont’eva, A A, An attempt to apply thfrmal analysis to the study of adsorption processes Jour. Phys. Chem. (USSR) 1944 18 4.Google Scholar
Linseis, M, Relation between mineralogical structure and ceramic properties of kaolins and clav Sprechsaal 1950 83 53250.Google Scholar
Luzhnikov, L P Berg, L G, Use of differential thermography in the study of aging in aluminum alloys Zayods-kaya Lab. 1948 14 824828.Google Scholar
McConnell, D, The crystal chemistry of montmoril-lonite Am. Mineralogist 1950 35 166173.Google Scholar
McConnell, D, The crystal chemistry of montmorillo-nite; II Calculation of the structural formula Clay Min. Bull. 1951 6 179189.CrossRefGoogle Scholar
McConnell, D Early, J W, Apparatus for differential thermal analysis Am. Ceramic Soc. Jour. 1952 346 183187.Google Scholar
Macgee, A E, The heat required to fire ceramic bodies Am. Ceramic Soc. Jour. 1926 9 206247.CrossRefGoogle Scholar
Mackenzie, R C, Nature of free iron oxides in soil clays Nature 1949 104 214.Google Scholar
Mackenzie, R C, Differential thermal analysis of clay minerals 4th Int. Cong. Soil Sci. Trans. 1950 2 5559.Google Scholar
Mackenzie, R C, Differential thermal analysis and its application to industrial powders Tonind. Zeit. 1951 75 334340.Google Scholar
Manly, R L Jr., The differential thermal analysis of certain phosphates Am. Mineralogist 1950 35 108115.Google Scholar
Mellor, J W Holdcroft, A D, The chemical constitution of the kaolinite molecule Pottery Gazette 1911 36 680686.Google Scholar
Menshutkin, B N, History of thermal analysis: Ann. secteur Anal. Phys. Chem., Inst. Chem. gen. (USSR) 1936 8 373400.Google Scholar
Mitchell, L Henry, E C, Nature of Georgia kaolin; II. Mineral analysis Am. Ceramic Soc. Jour. 1943 26 113119.Google Scholar
Mitchell, U, A new classification of the clays of Georgia Georgia Div. Conservation, Dept. Mines. Mining, and Geol. Suryey. Bull. 1950 56 9698.Google Scholar
Murray, P White, J, The kinetics of clay decomposition Clay Min. Bull. 1949 3 8488.CrossRefGoogle Scholar
Nagai, S Asahara, T Imai, M, Studies on high alumina minerals;. I. Thermal analysis Japan. Ceramic Assoc. Jour. 1943 51 381384.Google Scholar
Nagelschmidt, G, The identification of minerals in soil colloids Jour. Agr. Sci. 1939 29 476501.Google Scholar
Nagy, R Chung, K L, Thermal and X-ray analyses of some common phosphors Optical Soc. America Jour. 1947 37 3741.CrossRefGoogle Scholar
Norin, R, The decomposition products of kaolinite Geol. Forh. Foren. 1944 66 1518.CrossRefGoogle Scholar
Norin, R, Experiments in calculating the actual mineralogical composition of ceramic silica bricks by the aid of differential thermal analysis The Svedburg (mem. vol.) 1944 189192.Google Scholar
Norton, P H, Critical study of the differential thermal method for identification of clay minerals Am. Ceramic Soc. Jour. 1939 22 5463.CrossRefGoogle Scholar
Norton, F H, Hydrothermal formation of clay minerals in the laboratory Am. Mineralogist 1939 24 118.Google Scholar
Norton, F H, Analysis of high-alumina clays by the thermal method Am. Ceramic Soc. Jour. 1940 23 281282.CrossRefGoogle Scholar
Nutting, P G, Some standard thermal dehydration curves of minerals U. S. Geol. Survey, Prof. Paper 197-E 1943 197217.CrossRefGoogle Scholar
Orcel, J, Thermal analyses of chlorites Soc. franc, mineral Bull. 1927 50 278322.Google Scholar
Orcel, J, Thermal analysis of chlorite Soc. franc, mineral Bull. 1930 52 194197.Google Scholar
Orcel, J Caillere, S, Differential thermal analysis of montmorillonite (bentonite) Acad. Sci. Paris, Compt. rend. 1933 197 774777.Google Scholar
Orcel, J, Use of differential thermal analysis for determination of the constituents of clays, laterites and bauxites Congr. Internal. Mines Met. Geol. Appl., v. Session, Paris, Oct. 1935, Geology 1935 1 359373.Google Scholar
Page, J B, Differential thermal analysis of montmorillonite Soil Sci. 1943 56 273283.CrossRefGoogle Scholar
Partridge, E P Hicks, V Smith, G W, A thermal, microscopic and X-ray study of the system Na3PO3-Na4P2O7 Am. Chem. Soc. Jour. 1941 63 454.CrossRefGoogle Scholar
Pask, J. A., and Dayies, B., 1943, Thermal analysis of clay minerals and acid extraction of alumina from clays: U. S. Bur. Mines Rcpt. Inv. 3737.Google Scholar
Pavloyitch, S, The action of heat upon some natural oxides of manganese Acad. Sci. Paris, Comptes rendus 1935 200 7173.Google Scholar
Perkins, A T, Kaolin and treated kaolins and their reactions Soil Sci. 1948 65 185191.CrossRefGoogle Scholar
Reviere, A, Argillaceous sediments Soc. Geol. Franc. Bull. 1946 10 4355.Google Scholar
Rice, A P, Differential thermal analysis studies in some silicate systems Electrochem. Soc. Jour. 1949 90 114122.CrossRefGoogle Scholar
Roberts-Austen, 1890, Fifth report of the alloys research committee: Inst. Mech. Eng., v. 35.Google Scholar
Roberts, A L, Differential thermal analysis applied to the silica minerals (Univ. of Leeds) 3rd Anv. meet., Min. Soc., Apr. 1949.Google Scholar
Rowland, R. A., 1948. Differential thermal analysis apparatus: Shell Oil Co., Exploration and Production Research Division Rep. 101. 41 pp.Google Scholar
Rowland, R A Jouas, E C, Variations in Differential thermal analysis curves of siderite Am. Mineralogist 1949 34 550558.Google Scholar
Rowland, R A Lewis, D R, Furnace atmosphere control in differential thermal analysis Am. Mineralogist 1951 30 1&2 8091.Google Scholar
Rowland, R A Beck, C W, Determination of small quantities of dolomite by differential thermal analysis Am. Minerologist 1952 37 7682.Google Scholar
Roy, R Middlesworth, E T Hummel, F A, Mineralogy and thermal behavior of phosphates; I. Magnesium pyrophosphate Am. Minerologist 1948 33 458471.Google Scholar
Roy, R, Decomposition and resynthesis of the micas Am. Ceramic Soc. Jour. 1949 32 202209.Google Scholar
Russell, M B Haddock, J L, The identification of the clay minerals in five Iowa soils by the thermal method Soil Sci. Soc. America Proc 1940 5 9094.CrossRefGoogle Scholar
Sabatier, M, Researches on glauconite Soc. franc. Mineral, and Cryst. Bull. 1949 72 475542.Google Scholar
Sabatier, G, Effect of the dimensions of chlorite crystals on their differential thermal analysis curves Soc. franc, mineral. Bull. 1950 73 4348.Google Scholar
Satoh, S, Bndo- and exothermic change of the kaolinite in Japan Jour. Chem. Ind., Japan 1918 21 631648.Google Scholar
Satoh, S, A study of the heating and cooling curves of Japanese kaolinite Am. Ceramic Soc. Jour. 1921 4 182194.CrossRefGoogle Scholar
Satoh, S, Heat effects on fire clays and their mixtures Science Repts. Tohoku Imp. Univ., ser. 3 1923 1 3 157201.Google Scholar
Saunders, H L Giedroyc, V, Differential thermal analysis in controlled atmosphere British Ceramic Soc. Trans. 1950 49 365374.Google Scholar
Schafer, G M Russel, M B, The thermal method as a quantitative measure of clay mineral content Soil Sci. 1942 53 353364.CrossRefGoogle Scholar
Schwob, Y, The simple and complex rhombohedral carbonates of calcium, magnesium, and iron; Their thermal dissociation Rev. materiaux construction trav. publ., Edit. C. 1949 409420.Google Scholar
Schwob, Y, I. Simple and complex rhombohedral carbonates of calcium, magnesium, and iron; Their thermal dissociation Rev. materiaux construction trav. publ., Edit. C. 1950 3343.Google Scholar
Schwob, Y, II. Simple and complex rhombohedral carbonates of calcium, magnesium, and iron; Their thermal dissociation Rev. materiaux construction trav. publ., Edit. C. 1950 128133.Google Scholar
Sedletskii, I D, X-ray characteristics of the mineral “monothermite” Doklady Akad. Napk. (USSR) 1949 67 353355.Google Scholar
Sedletskii, I D, Mineralogy of white clays of the Rostov region Doklady Akad. Nauk. (USSR) 1949 09 6972.Google Scholar
Sedletskii, I D Samodurov, P S, Magnesium mono-thermite Zapiski Vsesoyuz. Mineral Obsbechestva. 1949 76 274276.Google Scholar
Shorter, A J, Contribution to the theory of differential thermal analysis; I. Measurement of the heat required in firing clays British Ceramic Soc. Trans. 1948 47 22.Google Scholar
Siefert, A C Henry, E C, Effect of eichangeable cations on hydrophilic nature of kaolin and bentonite Am. Ceramic Soc. Jour. 1947 31 3738.CrossRefGoogle Scholar
Smothers, W J Dziemianowicz, T, Refractory and thermal observations on an Arkansas clay deposit Am. Ceramic Soc. Bull. 1951 30 7475.Google Scholar
Smothers, W J Chiang, X Wilson, A, Bibliography of differential thermal analysis Univ. Arkansas Inst, of Science and Tech., Research ser., no. 21 1951.Google Scholar
Smothers, W J Chiang, Y, Differential thermal curves of selected lignites Econ. Geology 1952 47 384397.CrossRefGoogle Scholar
Smyth, H T, Temperature distribution during mineral inversion and its significance in differential thermal analysis Am. Ceramic Soc. Jour. 1951 34 221224.CrossRefGoogle Scholar
Soveri, U, Differential thermal analysis as an aid to the investigation of our (Finnsh) clays Geologi 1949 1 910.Google Scholar
Soveri, U., 1950, Differential thermal analysis of some Quaternary clays of Fenuoseandia: Ann. Acad. Sclent. Fenuicae, A. III, v. 23, 103 pp.Google Scholar
Spell, S. 1944, Application of thermal analysis to clays and aluminous minerals: U. S. Bur. Junes, Rept. Inv. 3764, 36 pp.Google Scholar
Speil, S Berkelhamer, L H Pask, J A Davies, B, Differential thermal analysis; Its application to clays and other aluminous minerals U. S. Bur. Mines, Tech. Paper 664 1945.Google Scholar
Splichal, J Skramovsky, S Goll, J, Thermal decomposition of carbonate minerals Veda prirodini 1936 17 206213.Google Scholar
Stone, R L, Differential thermal analysis under controlled thermodynamic conditions Ohio State Fniv. Engineering Experiment Sta. Bull. 1951.Google Scholar
Stone, R L, Apparatus for differential thermal analysis under controlled partial pressure of H2O, CO2 or other gases Am. Ceramic Soc. Jour. 1952 35 3 7682.CrossRefGoogle Scholar
Stone, R L, Differential thermal analysis of kaolin group minerals under controlled partial pressure of H2O Am. Ceramic Soc. Jour. 1952 35 4 9099.CrossRefGoogle Scholar
Tereshchenko, A V Dudarskii, I E, Regulating the plastic properties of clay Ogneuporui 1935 3 127134.Google Scholar
Theron, J J Heydrenrych, J C Anderson, F, A thermocouple microvoltmeter for use in the differential thermal analysis of clays Jour. Sei. Inst. 1949 26 233.Google Scholar
Thilo, E Schunemann, H, Chemical studies of silicates; IV. Behavior of pyrophyllitcs Al2(Si4O10) (OH)2 on heating and the existence of a “water-free” pyrophyllite, Al2(Si4O10O Zeitschr. anorg. allgem. Chem. 1937 230 321335.CrossRefGoogle Scholar
Trombe, F, Estimation of quartz by differential thermal analysis Acad. Sci. Paris, Comptes rendus 1938 207 11111113.Google Scholar
Vakhrusheve, V A, On the ferrihalloysite from the Ana-tolsky silicate-nickel ore deposits in the middle Urals Soc. Russe Min. Mem. 1949 78 272274.Google Scholar
Vaseniu, F I, Thermal analysis of silicates Vsesoyuz. Naueh.-Issledovatel’. Inst. Tsement., Byull. 1937 1937 1 7983.Google Scholar
Void, M J, Differential thermal analysis Anal. Chem. 1949 21 683688.Google Scholar
Void, M J Hattiangdi, G S Void, R D, Phase state and thermal transitions of greases Ind. Eng. Chem. 1949 411 25392546.Google Scholar
Vold, M J Vold, R D, The ehase behavior of lithium stearate in cetane and in decalin Jour. Colloid Sci. 1950 5 119.CrossRefGoogle Scholar
Vold, R D, Anhydrous sodium soaps; Heats of transition and classification of the phases Am. Chem. Soc. Jour. 1941 63 29152924.CrossRefGoogle Scholar
Vold, R D Void, M J, Thermal transitions of the alkali palmitates Jour. Phys. Chemistry 1945 40 32.CrossRefGoogle Scholar
Vold, R D, The polymorphism and transitions of anhydrous sodium stearate Jour. Phys. Chemistry 1945 40 315328.CrossRefGoogle Scholar
Void, R D, Phase boundaries in concentrated systems of sodium oleate and water Jour. Phys. Colloid Chem. 1947 51 797815.Google Scholar
Vold, R D Grandine, J D Void, M J, Polymorphic transformations of calcium stearate monohvdrate Jour. Colloid Sci. 1948 3 3399.Google Scholar
Wallach, R, Thermal analysis of clays Acad. Sci. Paris Comptes rendus 1913 157 4850.Google Scholar
Warde, J M Denysschen, J H, Differential thermal analysis of some South African fire clays and other ceramic materials Geol. Soc. South Africa, Trans. 1949 52 413–43.Google Scholar
Warde, J M, Refractory clays in the Union of South Africa Am. Ceramic Soc. Bull. 1950 20 257260.Google Scholar
Whitehead, W L Breger, I A, Vacuum differential thermal analysis Science, (new ser.) 1950 III 279281.CrossRefGoogle Scholar
Wiklander, E, Differential thermal analysis of some Quaternary clays of Sweden Geol. Forcn. i Stockholm Forli. 1950 72 110132.Google Scholar
Wilcox, R L Bollard, J R, A self-recording apparatus for thermal analysis Metal and Alloys 1936 7 221224.Google Scholar
Wittels, M, The differential thermal analyzer as a micro-calorimeter Am. Mineralogist 1951 36 615622.Google Scholar
Wittels, M, Some aspects of mineral calorimetry Am. Mineralogist 1951 36 760767.Google Scholar
Wittels, M, Structural transformations in amphiboles at elevated temperatures Am. Mineralogist 1951 36 851860.Google Scholar
Wittels, M, The structural disintegration of some amphiboles Am. Mineralogist 1952 37 2837.Google Scholar
Wohlen, R, Thermal analyses of clays, bauxites and some allied materials Sprcehsaal 1913 46 719721.Google Scholar
Yamauchi, T Suzuki, S, Thermal analysis of Japanese raw clays Japan Ceramic Assoc. Jour. 1942 51 211221.Google Scholar
Zakharov, M V, Establishing optimum conditions for heating and cooling during differential thermal analysis Zavodskaya Lab. 1940 8 968973.Google Scholar
Zhuravlev, V F Zhitomirskaya, V I, Binding properties of crystal hydrates of the sulfate type Jour. Applied Chemistry (USSR) 1950 23 113117.Google Scholar
Zhuravlev, V F Zhitomirskaya, V I, Binding properties of crystal hydrates of the sulfate type Jour. Applied Chemistry (USSR) 1950 23 230232.Google Scholar