Skip to main content
Log in

Selective Sorption and Fixation of Cations by Clay Minerals: A Review

  • Published:
Clays and Clay Minerals

Abstract

Investigations concerning selective sorption and fixation of K and similar cations by clay minerals and soil clays and the mechanisms of these reactions are reviewed. In particular, recent observations on selective sorption of these ions in dilute solutions by weathered micas and vermiculite in relation to the interlayer structures are discussed in detail. Also, implications of the resistance to weathering of small mica particles to cation selectivity by soils are described. Despite the increased understanding of sorption and fixation reactions, the following aspects remain unclear.

First, the mechanism of the collapse of alternate layers in vermiculite on K or Cs sorption has not been unequivocally established. Second, factors that impart stability to the central core of mica particles so that K extraction becomes progressively difficult are not known. Third, inability of Ca or Mg ions to expand interlayers of Cs-saturated vermiculite in contrast to K-saturated vermiculite is not completely understood.

Résumé

On passe en revue les recherches concernant la sorption sélective et la fixation de K et de cations similaires par les minéraux argileux et les argiles des sols ainsi que les recherches concernant les mécanismes de ces réactions. En particulier, des observations récentes sur la sorption sélective de ces ions en solutions diluées par les micas altéres et la vermiculite, en liaison avec les structures interfeuillets, sont discutées en détail. De même, on décrit les implications de la résistance à l’altération de petites particules de mica dans la sélectivité des sols pour le cation. En dépit d’une amélioration dans la compréhension des réactions de sorption et de fixation, les points suivants sont toujours mal éclaircis.

En premier lieu, le mécanisme de la fermeture de couches alternées dans la vermiculite lors de la sorption de K ou Cs n’a pas été établi sans équivoque. En second lieu, les facteurs qui confèrent la stabilité au noyau central des particules de mica, si bien que l’extraction de K devient de plus en plus difficile, ne sont pas connus. En troisième lieu, l’inaptitude des ions Ca ou Mg à ouvrir les espaces interfeuillets de vermiculite saturée par le Cs, ce qui contraste avec le comportement de la vermiculite saturée par le K, n’est pas complètement comprise.

Kurzreferat

Es werden Untersuchungen über die selektive Sorption und Fixierung von K und ähnlichen Kationen durch Tonminerale und Bodentone sowie die Mechanismen dieser Reaktionen überprüft. Insbesonders werden neuere Beobachtungen über selektive Sorption dieser Ionen in verdünnten Lösungen durch verwitterte Glimmer und Vermiculite in bezug auf die Zwischenschichtgefüge im Einzelnen erörtert. Ferner wird die Bedeutung des Widerstandes gegen Verwitterung kleiner Glimmerteilchen für die Kationenselektivität der Böden beschrieben. Ungeachtet des besseren Verständnisses der Sorptions-und Fixierungsreaktionen, sind die folgenden Aspekte weiter unklar.

Erstens ist der Mechanismus des Zusammenbruchs alternierender Schichten im Vermiculit bei K oder Cs Sorption nicht eindeutig festgelegt worden. Zweitens sind die Faktoren, die dem inneren Kern von Glimmerteilchen Stabilität verleihen, so dass die K-Extraktion fortschreitend schwieriger wird nicht bekannt. Drittens ist die Unfähigkeit von Ca oder Mg Ionen die Zwischenschichten von Cs-gesättigtem Vermiculit im Gegensatz zum K-gesättigten Vermiculit auszuweiten nicht ganz verständlich.

Резюме

Дан обзор исследований, посвященных селективному поглощению и фиксации К и аналогичных катионов глинистыми минералами и почвенными глинами, а также механизму подобных реакций. В частности, детально рассматриваются недавно проведенные исследования по селективному поглощению этих катионов в разбавленных растворах выветрелыми слюдами и вермикулитом с разной структурой межслоевого пространства. Стойкость к выветриванию небольших частиц слюды объясняется селективностью почв по отношению к катионам. Однако отмечается, что несмотря на все углубляющееся понимание механизма поглощения и фиксации остаются неясными следующие аспекты.

Во-первых, однозначно не установлен механизм сжатия чередующихся слоев в вермикулите в результате поглощения К или Ca. Во-вторых, до сих пор не выяснены факторы, определяющие устойчивость центральных частей глинистых частиц, благодаря которым удаление К становится все более и более затруднительным. В-третьих, полностью не понята неспособность ионов Ca или Mg вызывать разбухание межслоевых промежутков Cs-насыщенных вермикулитов в противоположность их действию на K-насыщенные вермикулиты.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content: Am. Mineralogist 33, 655–678.

    Google Scholar 

  • Barshad, I. (1950) The effect of the interlayer cations on the expansion of the mica type of crystal lattice: Am. Mineralogist 35, 225–238.

    Google Scholar 

  • Bassett, W. A. (1959) The origin of vermiculite deposit at Libby, Montana: Am. Mineralogist 44, 282–299.

    Google Scholar 

  • Bolt, G. H., Sumner, M. E. and Kamphorst, A. (1963) A study of the equilibria between three categories of potassium in an illitic soil: Soil Sci. Soc. Am. Proc. 27, 294–299.

    Article  Google Scholar 

  • Boyle, J. R., Voigt, G. K. and Sawhney, B. L. (1967) Biotite flakes: Alteration by chemical and biological treatment: Science 155, 193–195.

    Article  Google Scholar 

  • Brown, G. and Newman, A. C. D. (1970) Cation exchange properties of micas-III. Release of potassium sorbed by potassium-depleted micas: Clay Minerals 8, 273–278.

    Article  Google Scholar 

  • Coleman, N. T., Craig, Doris, and Lewis, R. J. (1963) Ion-exchange reactions of cesium: Soil Sci. Soc. Am. Proc. 27, 287–289.

    Article  Google Scholar 

  • Coleman, N. T. and LeRoux, F. H. (1965) Ion-exchange displacement of cesium from soil vermiculite: Soil Sci. 99, 243–250.

    Article  Google Scholar 

  • Dolcater, D. L., Lotse, E. G., Syers, J. K. and Jackson, M. L. (1968) Cation exchange selectivity of some clay-sized minerals and soil materials: Soil Sci. Soc. Am. Proc. 32, 795–798.

    Article  Google Scholar 

  • Farmer, V. C. and Wilson, M. J. (1970) Experimental conversion of biotite to hydrobiotite: Nature 226, 841–842.

    Article  Google Scholar 

  • Hill, D. E. and Sawhney, B.. L. (1969) Electron micro-probe analysis of thin sections of soils to observe loci of cation exchange: Soil Sci. Soc. Am. Proc. 33, 531–534.

    Article  Google Scholar 

  • Jacobs, D. G. and Tamura, T. (1960) The mechanism of ion fixation using radio-isotope techniques: Trans. Int. Congr. Soil Sci. 7th Madison 2, 206–214.

    Google Scholar 

  • Jackson, M. L. and Sherman, G. D. (1953) Chemical weathering of minerals in soils: Advan. Agron. 5, 219–318.

    Article  Google Scholar 

  • Jackson, M. L. (1963) Interlayering of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals 11, 29–46.

    Article  Google Scholar 

  • Keay, J. and Wild, A. (1961) The kinetics of cation exchange in vermiculite: Soil Sci. 92, 54–60.

    Article  Google Scholar 

  • Kittrick, J. A. (1966) Forces involved in ion fixation by vermiculite: SoilSci. Soc. Am. Proc. 30, 801–803.

    Article  Google Scholar 

  • Krishnamoorthy, C. and Overstreet, R. (1950) An experimental evaluation of ion exchange relationships: Soil Sci. 69, 41–53.

    Article  Google Scholar 

  • Klechkovsky, V. M., Sokolova, L. N. and Tselishcheva, G. N. (1959) The sorption of microquantities of strontium and cesium in soils: In Progress in Nuclear Energy (Edited by W. G. Marley and K. Z. Morgan), Vol. 12, pp. 486–499, Health Physics, Pergamon Press, New York.

    Google Scholar 

  • LeRoux, J. and Rich, C. I. (1969) Ion selectivity of micas as influenced by degree of potassium depletion: Soil Sci. Soc.Am. Proc. 33, 684–690.

    Article  Google Scholar 

  • LeRoux, J., Rich, C. I. and Ribbe, P. H. (1970) Ion selectivity by weathered micas as determined by electron microprobe analysis: Clays and Clay Minerals 18, 333–338.

    Article  Google Scholar 

  • Marshall, C. E. and Garcia, G. (1959) Exchange equilibria in a carboxylic resin and in Attapulgite clay: J. Phys. Chem. 63, 1663–1666.

    Article  Google Scholar 

  • Marshall, C. E. and McDowell, L. L. (1965) The surface reactivity of micas: Soil Sci. 99, 115–131.

    Article  Google Scholar 

  • Mortland, M. M. (1958) Kinetics of potassium release from biotite: Soil Sci. Soc. Am. Proc. 22, 503–508.

    Article  Google Scholar 

  • Mortland, M. M. and Ellis, B. G. (1959) Release of fixed potassium as a diffusion controlled process: Soil Sci. Soc.Am. Proc. 23, 363–364.

    Article  Google Scholar 

  • Mortland, M. M. and Lawton, K. (1961) Relationships between particle size and potassium release from biotite and its analogues: Soil Sci. Soc. Am. Proc. 25, 473–476.

    Article  Google Scholar 

  • Newman, A. C. D. and Brown, G. (1966) Chemical changes during the alteration of micas: Clay Minerals 6, 297–310.

    Article  Google Scholar 

  • Nishita, H., Taylor, P., Alexander, G. V. and Larson, K. H. (1962) Influence of stable Cs and K on the reactions of 137Cs and 42K in soils and clay minerals: SoilSci. 94, 187–197.

    Google Scholar 

  • Norrish, K. (1954) The swelling of montmorillonite: Disc. Faraday Soc. 18, 120–134.

    Article  Google Scholar 

  • Ormsby, W. C., Schartsis, J. M. and Woodside, K. H. (1962) Exchange behaviour of kaolins of varying degrees of crystallinity: J. Am. Ceram. Soc. 45, 361–366.

    Article  Google Scholar 

  • Page, J. B. and Baver, L. D. (1940) Ionic size in relation to fixation of cations by colloidal clay: Soil Sci. Soc. Am. Proc. 4, 150–155.

    Article  Google Scholar 

  • Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer lattice silicates — II. Regression relations: Am. Mineralogist 47, 617–636.

    Google Scholar 

  • Raman, K. V. and Jackson, M. L. (1964) Vermiculite surface morphology: Clays and Clay Minerals 12, 423–429.

    Article  Google Scholar 

  • Raman, K. V. and Jackson, M. L. (1966) Layer charge relations in clay minerals of micaceous soils and sediments: Clays and Clay Minerals 14, 53–68.

    Article  Google Scholar 

  • Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K. (1965) Studies in the artificial weathering of mica: In Experimental Pedology (Edited by E. G. Hallsworth and D. V. Crawford), pp. 40–72, Butter-worths London.

    Google Scholar 

  • Reed, M. G. and Scott, A. D. (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions: Soil Sci. Soc. Am. Proc. 26, 437–440.

    Article  Google Scholar 

  • Rhoades, J. D. and Coleman, N. T. (1967) Interstratification in vermiculite and biotite produced by potassium sorption —I. Evaluation by simple X-ray diffraction pattern inspection: Soil Sci. Soc. Am. Proc. 31, 366–372.

    Article  Google Scholar 

  • Reichenbach, H. G. Von (1968) Cation exchange in the interlayers of expansible layer silicates: Clay Minerals 7, 331–341.

    Article  Google Scholar 

  • Reichenbach, H. G. Von and Rich, C. I. (1969) Potassium release from muscovite as influenced by particle size: Clays and Clay Minerals 17, 23–29.

    Article  Google Scholar 

  • Reitemeier, R. F. (1951) The chemistry of soil potassium: Advan. Agron. 3, 113–164.

    Article  Google Scholar 

  • Rich, C. I. (1964) Effect of cation size and pH on potassium exchange in Nason soil: Soil Sci. 98, 100–106.

    Article  Google Scholar 

  • Rich, C. I. and Black, W. R. (1964) Potassium exchange as affected by cation size, pH, and mineral structure: Soil Sci. 97, 384–390.

    Article  Google Scholar 

  • Rich, C. I. (1968) Mineralogy of soil potassium: In The Role of Potassium in Agriculture (Edited by V. J. Kilmer, S. E. Younts and N. C. Brady), pp. 79–108, American Society of Agronomy, Inc., Madison, Wise.

    Google Scholar 

  • Sawhney, B. L. (1964) Sorption and fixation of micro-quantities of Cs by clay minerals: effect of saturating cations: SoilSci. Soc.Am. Proc. 28, 183–186.

    Article  Google Scholar 

  • Sawhney, B. L. and Frink, C. R. (1964) Sorption of cesium from dilute solutions by soil clays: Trans. 8th Int. Cong. Soil Sci. Bucharest 3, 423–431.

    Google Scholar 

  • Sawhney, B. L. (1965) Sorption of cesium from dilute solutions: SoilSci. Soc.Am. Proc. 29, 25–28.

    Article  Google Scholar 

  • Sawhney, B. L. (1967a) Cesium sorption in relation to lattice spacing and cation exchange capacity of biotite: SoilSci. Soc.Am. Proc. 31, 181–183.

    Article  Google Scholar 

  • Sawhney, B. L. (1967b) Interstratification in vermiculite: Clays and Clay Minerals 15, 75–84.

    Article  Google Scholar 

  • Sawhney, B. L. (1969a) Regularity of interstratification as affected by charge density in layer silicates: Soil Sci. Soc. Am. Proc. 33, 42–46.

    Article  Google Scholar 

  • Sawhney, B. L. (1969b) Cesium uptake by layer silicates: effect on interlayer collapse and cation exchange capacity: Proc. Int. Clay Conf., Tokyo 1, 605–611. Israel Universities Press.

    Google Scholar 

  • Sawhney, B. L. (1970) Potassium and cesium ion selectivity in relation to clay mineral structure: Clays and Clay Minerals 18, 47–52.

    Article  Google Scholar 

  • Sawhney, B. L. and Voigt, G. K. (1969) Chemical and biological weathering in vermiculite from Transvaal: Soil Sci. Soc. Am. Proc. 33, 625–629.

    Article  Google Scholar 

  • Schulz, R. K., Overstreet, R. and Barshad, I. (1960) On the soil chemistry of 137Cs: Soil Sci. 89, 16–27.

    Article  Google Scholar 

  • Schwertmann, U. (1962a) Eigenschaften und Bildung aufweitbarer (quellbarer) Dreischicht-Tonminerale in Boden aus Sedimenten: Beitrage zur Mineralogie und Petrographies, 199–209.

    Google Scholar 

  • Schwertmann, U. (1962b) Die selective Kationen sorption der Tonfraktion einiger Boden aus Sedimenten: Z. Pflanzenernahr Dung Bodenk 97, 9–25.

    Article  Google Scholar 

  • Schouwenburg, J. C. H. Von and Schuffeien, A. C. (1963) Potassium exchange behaviour of an illite: Neth.J. Agric. Sci. 11, 13–22.

    Google Scholar 

  • Scott, A. D. and Smith, S. J. (1966) Susceptibility of interlayer potassium in micas to exchange with sodium: Clays and Clay Minerals 14, 69–81.

    Article  Google Scholar 

  • Scott, A. D. (1968) Effect of particle size on interlayer potassium exchange in micas: Trans. Int. Cong. Soil Sci. Adelaide 2, 649–659.

    Google Scholar 

  • Serratosa, J. M. and Bradley, W. F. (1958) Determination of the orientation of OH bond axes in layer silicates by infrared adsorption: J. Phys. Chem. 62, 1164–1167.

    Article  Google Scholar 

  • Shainberg, I. and Kemper, W. D. (1966) Hydration status of adsorbed cations: Soil Sci. Soc. Am. Proc. 30, 707–713.

    Article  Google Scholar 

  • Stanford, G. (1948) Fixation of potassium in soils under moist conditions and on drying in relation to type of clay mineral: Soil Sci. Soc. Am. Proc. 12, 167–171.

    Article  Google Scholar 

  • Tamura, T. and Jacobs, D. G. (1960) Structural implications in cesium sorption: Health Physics 2, 391–398.

    Article  Google Scholar 

  • Tucker, B. M. (1967a) The solubility of potassium from soil illites — III. Reactivity towards other ions: Aust. J. Soil Res. 5, 173–190.

    Article  Google Scholar 

  • Tucker, B. M. (1967b) The solubility of potassium from soil illites —IV. Rate of reaction and exchange constants: A ust. J. Soil Res. 5, 191–201.

    Article  Google Scholar 

  • Walker, G. F. (1956) The diffusion of interlayer water in vermiculite: Nature 177, 239–240.

    Article  Google Scholar 

  • Walker, G. F. (1959) Diffusion of exchangeable cations in vermiculite: Nature 184, 1392–1394.

    Article  Google Scholar 

  • Wear, J. I. and White, J. L. (1951) Potassium fixation in clay minerals as related to crystal structure: Soil Sci. 71, 1–14.

    Article  Google Scholar 

  • Weed, S. B. and Leonard, R. A. (1968) Effect of K+-uptake by K+-depleted micas on the basal spacing: Soil Sci. Soc. Am. Proc. 32, 335–340.

    Article  Google Scholar 

  • Weir, A. H. (1965) Potassium retention in montmorillonite: Clay Minerals 6, 17–22.

    Article  Google Scholar 

  • Wells, C. B. and Norrish, K. (1968) Accelerated rates of release of interlayer potassium from micas: Trans. Int. Congr. Soil Sci. 9th, Adelaide 2, 683–694.

    Google Scholar 

  • Wiewiora, A. and Brindley, G. W. (1969) Potassium acetate intercalation in kaolinite and its removal; effect of material characteristics: Proc. Int. Clay Conf., Tokyo 1, 723–733. Israel Universities Press.

    Google Scholar 

  • Wiklander, L. (1950) Fixation of potassium by clays saturated with different cations: Soil Sci. 69, 261–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawhney, B.L. Selective Sorption and Fixation of Cations by Clay Minerals: A Review. Clays Clay Miner. 20, 93–100 (1972). https://doi.org/10.1346/CCMN.1972.0200208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1972.0200208

Navigation