Skip to main content
Log in

Optical Absorption Spectra of Clay Minerals

  • Published:
Clays and Clay Minerals

Abstract

A preliminary survey of electronic absorption spectra of clay minerals reveals the utility of u.v.-visible spectroscopy in the elucidation of structural, physical, and chemical properties of such systems. Spectra, which were obtained in the suspension, film, and single crystal states (where applicable), are interpreted in terms of iron-associated transitions. Microcrystalline clay minerals typically show Fe(lll) in octahedral oxo-ligand geometry whereas mica-type minerals may show a range of iron species, including octahedral Fe(III), tetrahedral Fe(III), and octahedral Fe(II). Iron affects the local site geometry and in “high iron” minerals may dictate layer geometry and subsequently the crystalline form.

Résumé

Un tour d’horizon préliminaire des spectres d’absorption électronique des minéraux argileux révèle l’utilité de la spectroscopic ultraviolet-visible si l’on veut élucider les propriétés structurales, physiques et chimiques de tels systèmes. Les spectres, obtenus avec des suspensions, des films ou des monocristaux (quand c’est possible) sont interprétés en terme de transitions associées au fer. Les minéraux argileux microcristallins montrent d’une façon typique le Fe (III) dans une géométrie octa-édrique d’oxo-ligands, tandis que les minéraux du type mica peuvent montrer toute une série d’espèces du fer, comprenant Fe (III) octaédrique, Fe III tétraédrique et Fe (II) octaédrique. Le fer affecte la géométrie locale du site et dans les minéraux “riches en fer” peut imposer une géométrie au feuillet et par là, imposer la forme cristalline.

Kurzreferat

Eine Voranalyse der elektronischen Absorptionsspektren von Tonmineralien erweist den Wert ultraviolett-sichtbarer Spektroskopie für die Erforschung der strukturellen, physischen und chemischen Eigenschaften derartiger Systeme. Spektren, die in den Suspensions-, Film- und Einkristallzuständen (je nach Verfügbarkeit) erzielt wurden, werden als Übergangsphasen in Verbindung mit Eisen interpretiert. Mikrokristalline Tonmineralien weisen typisch Fe(III) in oktahedralem Oxoverband auf, während glimmerartige Mineralien eine Reihe von Eisenarten wie oktahedralem Fe(III), tetrahedralem Fe(III) und oktahedralem Fe(II) enthalten mögen. Eisen übt auf die lokale Lagerstättengeometrie einen Einfluß aus und kann in eisenreichen Mineralien für die Schichtengeometrie und daher die Kristallform entscheidend sein.

Резюме

Предварительное исследование спектра электронного поглощения глинистых минералов выявило ценность видимой ультрафиолетовой спектроскопии в разъяснении структурных физических и химических особенностей таких систем. Спектры полученные от суспензии, на пленке и на сростке отдельных кристаллов (где относится) расшифровывались как соединения с железом. Микрокристаллические глинистые минералы обычно включают Fe(III) в восьмигранной оксо-лигиндной конфигурации, в то время как слюдистые минералы могут состоять из ряда железистых групп, включая октаэдральный Fe(III) тетраэдральный Fe(III) и октаэдральный Fe(II). Железо влияет на конфигурацию места заложения и в минералах с высоким содержанием железа оно может влиять на конфигурацию слоев и на форму кристаллов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. C. and Hush, N. S. (1967) Intervalence transfer absorption: Progr. Inorg. Chem. 8, 357.

    Google Scholar 

  • Bailey, G. W., White, J. L. and Rothberg, T. (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate: Soil Sci. Soc. Amer. Proc. 32, 222.

    Article  Google Scholar 

  • Banin, A. and Lahav, N. (1968) Particle size and optical properties of montmorillonite in suspension: Israel J. Chem. 6, 235.

    Article  Google Scholar 

  • Bowen, L. H., Weed, S. B., and Stevens, J. G. (1969) Mössbauer study of micas and their potassium depleted products: Amer. Mineral. 54, 72.

    Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1967) Infrared absorption spectrometry in clay studies: Clays and Clay Minerals 15, 121.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D., and Ahlrich, J. L. (1968) Characterization of clay minerals by infrared spectroscopy: Ninth Intern. Congr. of Soil Sci. 3, 101.

    Google Scholar 

  • Faye, G. H. (1968a) The optical absorption spectra of iron in six-coordinate sites in chlorite, biotite, phlogo-pite and vivianite: Can. Mineral. 9, 403.

    Google Scholar 

  • Faye, G. H. (1968b) The optical absorption spectra of certain transition metal ions in muscovite, lepidolite, and fushsite: Can. J. Earth Sci. 5, 31.

    Article  Google Scholar 

  • Faye, G. H. and Nickel, E. H. (1970) The effect of charge transfer processes on the color and pleochroism of amphiboles: Can. Mineral. 11, 616.

    Google Scholar 

  • Furlani, C. (1957) Spettri di assorbimento di complessi elettrostatici del Fe: Gazz. Chim. Ital. 87(1), 376.

    Google Scholar 

  • Jorgensen, C. K. (1962a) Chemical bonding inferred from visible and ultraviolet absorption spectra: Sol. State Phys. 13, 376.

    Google Scholar 

  • Jorgensen, C. K. (1962b) Orbitals In Atoms and Molecules: Academic Press, New York.

    Google Scholar 

  • Lehmann, G. (1970) Ligand field and charge transfer spectra of Fe(III)-O complexes: Z. Phys. Chem. Neue Folge 72, 279.

    Article  Google Scholar 

  • Lever, A. B. P. (1968) Inorganic Electronic Spectroscopy: Elsevier, New York.

    Google Scholar 

  • McClure, D. S. (1963) Optical spectra of exchange coupled Mn2+ ion pairs in Zn Si Mn S: J. Chem. Phys. 39,2850.

    Article  Google Scholar 

  • Mortensen, J. L., Anderson, D. M., and White, J. L. (1965) Infrared spectrometry. In Methods of Soil Analysis (Edited by C. A. Black) Vol. 1, pp. 743–770, Am. Soc. Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Orgel, L. E. (1957) Ion compression and the color of ruby: Nature 179, 1348.

    Article  Google Scholar 

  • Schlafer, H. L. (1955) Light absorption as a result of an interaction of two states of valency of the same element: Z. Phys. Chem. Neue Folge 3, 222.

    Article  Google Scholar 

  • Taylor, G. L., Ruotsala, A. P. and Keeling, R. O. Jr. (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy: Clays and Clay Minerals 16, 381.

    Article  Google Scholar 

  • Weaver, C. E., Wampler, J. M. and Pecuil, T. E. (1967) Mössbauer analysis of iron in clay minerals Science 156, 504.

    Article  Google Scholar 

  • Wehl, W. A. (1951) Light absorption as a result of interaction of two states of valency of the same element: J. Phys. Coll. Chem. 55(1), 507.

    Article  Google Scholar 

  • White, J. L. (1971) Interpretation of infrared spectra of soil minerals: Soil Sci. 112, 22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karickhoff, S.W., Bailey, G.W. Optical Absorption Spectra of Clay Minerals. Clays Clay Miner. 21, 59–70 (1973). https://doi.org/10.1346/CCMN.1973.0210109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1973.0210109

Navigation