Skip to main content
Log in

Interlayer Bonding in Kaolinite, Dickite and Nacrite

  • Published:
Clays and Clay Minerals

Abstract

A simple electrostatic model has been used to demonstrate that the inner surface hydroxyls in kaolinite, dickite and nacrite are responsible for the interlayer bonding in these minerals. The contribution to the interlayer bonding of an individual hydroxyl hydrogen depends on the orientation of the hydroxyl group relative to the 1: 1 layer since this orientation determines the H—O interlayer distance. If this distance is much greater than the sum of the van der Waals radii, 2·60 Å, there is essentially no bond. As the distance becomes less than 2·60 Å, the strength of the interlayer bond increases.

Résumé

Un modèle électrostatique simple a été utilisé pour démontrer que les hydroxyles de la surface interne de la kaolinite, de la dickite et de la nacrite sont responsables de la liaison entre les feuillets de ces minéraux. La contribution à la liaison interfeuillet de l’hydrogène d’un hydroxyle pris individuellement dépend de l’orientation du groupe hydroxyle par rapport à la couche 1: 1, puisque cette orientation détermine la distance H—0 entre deux feuillets consécutifs. Si cette distance est beaucoup plus grande que la somme des rayons de van der Waals, 2,60 Å, il n’y a par définition aucune liaison. Lorsque cette distance devient inférieure à 2,60 Å, l’intensité de la liaison interfeuillet augmente.

Kurzreferat

Um zu zeigen, daß Hydroxylgruppen der inneren Oberflächen in Kaolinit, Dickit und Nakrit für die Zwischenschichtbindung in diesen Mineralen verantwortlich sind, wurde ein einfaches elektrostatisches Modell benutzt. Der Beitrag eines einzelnen Hydroxyl-Wasserstoffs zur Zwischenschichtbindung hängt von der Orientierung der Hydroxylgruppe zur 1: 1-Schicht ab, da diese den H—0-Zwischenschichtabstand bestimmt. Ist dieser Abstand sehr viel größer als die Summe der van der Waals-Radien, 2,60 Å, so tritt keine wesenfliche Bindung auf. Unterschreitet der Abstand den Wert von 2,60 Å, so steigt die Stärke der Zwischenschichtbindung an.

Резюме

Простая электростатическая модель применяется для доказательства того, что внутренние поверхностные гидроксилы каолинита, диккита и накрита ответствены за межслойную связь этих минералов. Способность индивидуального гидрокислого водорода содействовать межслойной связи зависит от ориентации гидроксильной группы относительно слоя 1: 1, т. к. ориентация определяет расстояние Н… 0 между слоями. Если это расстояние намного превышает сумму радиусов Ван-дер-Ваальса, 2,60 А, то, по существу, связи не имеется. По мере того как расстояние становится менее 2,60 А, повышается прочность связи между слоями.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur, W. H. (1965) On hydrogen bonds in crystalline hydrates: Acta Cryst. 19, 909–916.

    Article  Google Scholar 

  • Bertaut, F. (1952) L’energie electrostatique de reseaux ioniques: J. Phys. Radium 13, 499–505.

    Article  Google Scholar 

  • Blount, A. M., Threadgold I. M. and Bailey S. W. (1969) Refinement of the crystal structure of nacrite: Clays and Clay Minerals 17, 185–194.

    Article  Google Scholar 

  • Born, M. and Landé, A. (1918) Ueber die Berechnung der Kompressibilität regulärer Kristalle aus der Gittertheorie: Verh. der Deutsch. Phys. Ges. 20, 210–216.

    Google Scholar 

  • Born, M. and Mayer, J. E. (1932) Zur Gittertheorie der Ionenkristalle: Z. Phys. 75, 1–18.

    Article  Google Scholar 

  • Brindley, G. W. (1967) AGI Short Course Lecture Notes—Layer Silicates, Section A.

    Google Scholar 

  • Busing, W. R. (1970) An interpretation of the structures of alkaline earth chlorides in terms of interionic forces: Trans. Amer. Crystall. Assoc. 6, 57–72.

    Google Scholar 

  • Coulson, C. A. and Danielsson, W. (1954) Ionic and covalent contributions to the hydrogen bond: Arkiv Fysik Bd 8, 239–244.

    Google Scholar 

  • Cruz, M., Jacobs, H. and Fripiat, J. J. (1972) The nature of the cohesion energy in kaolin minerals: Internat. Clay Conf., Madrid, Preprints, Vol. 1, 59–70.

    Google Scholar 

  • Evans, R. C. (1964) An Introduction to Crystal Chemistry: Cambridge University Press, Cambridge.

    Google Scholar 

  • Giese, R. F. (1971) Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations: Science 172, 263–264.

    Article  Google Scholar 

  • Giese, R. F. and Datta, P. (1971) The orientation of hydroxyl groups in kaolinite, dickite and nacrite: 20th Annual Clay Conf., Rapid City (abs).

    Google Scholar 

  • Giese, R. F., Weller, S. and Datta, P. (1972) Electrostatic energy calculations of diaspore (alpha AlOOH), goethite (alpha FeOOH) and groutite (alpha MnOOH): Z. Krist. 134, 275–284.

    Google Scholar 

  • Hamilton, W. C. and Ibers, J. A. (1968) Hydrogen Bonding in Solids: Benjamin Inc., New York.

    Google Scholar 

  • Hendricks, S. B. (1938) The crystal structure of nacrite Al2O3. 2SiO2. 2H2O and the polymorphism of the kaolin minerals: Z. Krist. 100, 509–518.

    Google Scholar 

  • Ladd, M. F. C. (1968) The location of hydrogen atoms in crystalline ionic hydrates: Z. Krist. 126, 147–152.

    Article  Google Scholar 

  • Newnham, R. E. (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals: Mineral. Mag. 32, 683–704.

    Google Scholar 

  • Sherman, J. (1932) Crystal energies of ionic compounds and thermo-chemical applications: Chem. Rev. 11, 93–170.

    Article  Google Scholar 

  • Zvyagin, B. B. (1967) Electron-Diffraction Analysis of Clay Mineral Structures: Plenum Press, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giese, R.F. Interlayer Bonding in Kaolinite, Dickite and Nacrite. Clays Clay Miner. 21, 145–149 (1973). https://doi.org/10.1346/CCMN.1973.0210302

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1973.0210302

Navigation