Skip to main content
Log in

Discussion of the Occurrence and Origin of Sedimentary Palygorskite-Sepiolite Deposits

  • Published:
Clays and Clay Minerals

Abstract

Marine and non-marine palygorskite-sepiolite deposits are found throughout the world and occur interbedded with chert, dolomite, limestone, phosphates and other non-detrital sedimentary rocks. The origin of these high-magnesium clays has long been attributed to either alteration of volcanic ash or the structural transformation of smectite clays. More recently, others have argued origin by direct crystallization (neo-formation). Recent laboratory studies support this latter concept, particularly in environments where the concentration of alumina is low, the silica concentration high, and the pH alkaline. Such an origin is proposed for the Georgia-Florida deposits in southeastern United States, since major obstacles exist against formation by alteration of volcanic ash or by transformation of smectites. Lateritic weathering during the Miocene would have favored direct precipitation of these clays in the shallow, marginal seas. The basinward increase in the MgO: Al2O3 ratio is further support.

Deep weathering of crystalline rocks in northern British Honduras and Guatemala would have produced similar high silica, low alumina conditions on the adjacent submerged Yucatan Platform during the late Tertiary. The seaward increase in the MgO: A12O3 ratio, the lack of associated detrital constituents, and the absence of associated smectites strongly indicate a similar origin by direct crystallization of these Yucatan palygorskite-sepiolite clays.

Some occurrences of palygorskite and sepiolite may well be related to the alteration of smectite clays or volcanic ash. However, many of the large sedimentary deposits are more probably the result of direct crystallization adjacent to areas undergoing tropical or subtropical weathering.

Résumé

Les dépôts marins et non marins de palygorskite-sépiolite existent partout dans le monde et se présentent en mélange avec des chailles, de la dolomite, du calcaire, des phosphates et d’autres roches sédimendaires non détritiques. L’origine de ces argiles à haute teneur en magnésium a longtemps été attribuée soit à l’altération de cendres volcaniques, soit à la transformation structurale de smectites. Plus récemment d’autres auteurs ont défendu l’hypothèse d’une origine par cristallisation directe (néoformation). Des travaux de laboratoire récents confirment ce dernier concept, notamment dans le cas des environnements à concentration en alumine basse, à concentration en silice élevée et à pH alcalin. Une telle origine est proposée pour les dépôts de Georgie et Floride dans le sud-est des Etats-Unis, puisque des obstacles majeurs s’y opposent à l’altération d’une cendre volcanique ou à la transformation de smectites. Une altération latéritique pendant le miocène aurait favorisé la précipitation de ces argiles dans des mers marginales peu profondes. L’augmentation du rapport MgO: A12O3 en allant vers la cuvette est un argument supplémentaire.

L’altération profonde de roches cristallines dans le nord du Honduras britannique et au Gautemala aurait produit des conditions similaires—richesse en silice et pauvtreé en alumine—sur la plateforme voisine submergée du Yucatan pendant la fin du tertiaire. L’augmentation du rapport MgO: A12O3 en allant vers la mer, l’absence de constituants détritiques et de smectites associés indiquent avec force une origine comparable par cristallisation directe de ces palygorskites-sépiolites du Yucatan.

Certains gisements de palygorskite et de sépiolite sont sans doute reliés à l’altération de smectites ou de cendres volcaniques. Cependant, la plupart des grands dépôts sédimentaires est beaucoup plus probablement le résultat d’une cristallisation directe adjacente à des zones ayant subi une altération tropicale ou subtropicale.

Kurzreferat

Marine und nichtmarine Palygorskit-Sepiolit-Lagerstätten werden in der ganzen Welt gefunden und treten eingebettet in Quarzit, Dolomit, Kalkstein, Phosphate und andere nichtdetritische Sedimentgesteine auf. Die Entstehung dieser hochmagnesiumhaltigen Tone wurde lange entweder der Umbildung vulkanischer Aschen oder der Strukturumwandlung von Smectiten zugeschrieben. Neuerdings wurde von anderen Autoren eine Entstehung durch direkte Kristallisation (Neoformation) erörtert. Neuere Laboruntersuchungen stützen das letztgenannte Konzept besonders für Umweltbedingungen, in denen die Aluminiumkonzentration gering, die Kieselsäurekonzentration hoch ist und der pH-Wert im alkalischen Bereich liegt. Eine solche Entstehung wird für die Georgia-Florida-Lagerstätten in den südöstlichen Vereinigten Staaten vorgeschlagen, da hier einer Bildung durch Umsetzung vulkanischer Aschen oder durch Umwandlung von Smectiten größere Hindernisse entgegenstehen. Lateritische Verwitterung während des Miozäns würde in den flachen Randseen eine direkte Fällung dieser Tonminerale begünstigt haben. Der beckenwärts erfolgende Anstieg im MgO: Al2O3-Verhältnis ist eine weitere Stütze.

Tiefgründige Verwitterung kristalliner Gesteine im nördlichen Britisch-Honduras und Guatemala würden während des späten Tertiärs ähnliche kieselsäurereiche, aluminiumarme Bedingungen in der benachbarten überschwemmten Yucatan-Plattform hervorgerufen haben. Der seewärts erfolgende Anstieg im Mg0:Al203-Verhältnis, das Fehlen von Beimengungen detritischer Bestandteile und die Abwesenheit von Smectit deuten stark darauf hin, daß diese Yukatan-Palygorskit-Sepiolit Tone in ähnlicher Weise durch direkte Kristallisation entstanden sind.

Einige Vorkommen von Palygorskit und Sepiolit mögen wohl mit der Umwandlung von smectitischen und vulkanischen Aschen in Beziehung stehen, jedoch sind viele der großen sedimentären Lagerstätten mit großer Wahrscheinlichkeit das Ergebnis direkter Kristallisation in der Nachbarschaft von Gebieten, in denen tropische und subtropische Verwitterung ablief.

Резюме

Морские и неморские отложения палыгорскита-сепиолита находят по всему свету и они встречаются залегающими между пластами кремнистого сланца, доломита, известняка, фосфора и других необломочных осадочных горных пород. Происхождение этих глин с высоким содержанием магния давно уже предписывалось или изменениям вулканического пепла или структурной трансформации смектитных глин. Недавно выдвинули мнение, что происхождение это является непосредственной кристаллизацией (новонаслоением). Современные лабораторные исследования подтверждают последнюю консепцию, особенно, если в окружающих условиях концентрация глинозема низка, а концентрация кварца высока и при этом рН щелочный. Считают, что отложения в Джорджии-Флорида в Южных Соединенных Штатах такого происхождения, так как существуют важные возражения против изменения вулканического пепла или трансформации смектитов. Латеритовое выветривание в период миоцена повело бы к непосредственному осаждению этих глин в мелководных побережных морях. Увеличение отношения МgО: А12O3 по направлению к бассейну является добавочным подтверждением.

Глубокое выветривание кристаллических горных пород в Британских Гондурас и Гватемала создали бы такие условия высокого содержания кварца и низкого содержания глинозема на смежной погруженной платформе Юкатана во воремя позднего третичного периода. Повышение отношения МgO: А12Оз по направлению к морю, отсутствие ассоциированных наносных компонентов и отсутствие ассоциированных смектитов явно указывают на непосредственную кристаллизацию этих юкотанских палыгорских-сепиолитных глин.

Иногда происхождение палыгорскита и сепиолита может быть связано с изменениями смектитных глин или вулканического пепла. Однако многие крупные осадочные отложения являются, наверно, результатом непосредственной кристаллизации рядом с областями подвергающихся тропическому или субтропическому выветриванию.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Latif, N. and Weaver, C. (1969) Kinetics of acid-dissolution of palygorskite (attapulgite) and sepiolite: Clays and Clay Minerals 17, 169–178.

    Article  Google Scholar 

  • Arnold, D. (1967) Sak Iu’um in Maya culture: and its possible relation to Maya blue: Unpublished Ph.D. thesis, Dept. of Anthropology, University of Illinois, Urbana, Ill., 53 p.

    Google Scholar 

  • Arnold, D. (1971) Ethnomineralogy of Ticul, Yucatan potters: Am. Antiquity 36, 20–40.

    Article  Google Scholar 

  • Berry, E. (1916a) The physical conditions and age indicated by the flora of the Alum Bluff Formation: U.S. Geol. Survey Prof. Paper 98E, 41–59.

    Google Scholar 

  • Berry, E. (1916b) The physical conditions indicated by the flora of the Calvert Formation: U.S. Geol. Survey Prof. Paper 98F, 61–73.

    Google Scholar 

  • Berry, E. (1937) Tertiary floras of eastern North America: Bot. Rev. 3, 31–46.

    Google Scholar 

  • Bonatti, E. and Joensuu, O. (1968) Palygorskite from Atlantic deep sea sediments: Am. Mineralogist 53, 975–983.

    Google Scholar 

  • Brainerd, G. (1958) The archaeological ceramics of Yucatan: Univ. of California, Anthropological Records, 19, Berkeley and Los Angeles, 374 p.

  • Bradley, W. F. (1940) The structural scheme of attapulgite: Am. Mineralogist 25, 405, 410.

    Google Scholar 

  • Brauner, K. and Preisinger, A. (1956) Struktur and est-stehung des sepioliths: Tschermak’s Mineral. Petrogr. Mitt. 6, 120–140.

    Article  Google Scholar 

  • Brindley, G. W. (1959) X-ray and electron diffraction data for sepiolite: Am. Mineralogist 44, 495–500.

    Google Scholar 

  • Caillere, S. (1936) Contribution in l’etude des mineraux des serpentines: Bull. Soc. Franc. Mineral. 59, 163, 326.

    Google Scholar 

  • Caillere, S. (1951) Sepiolite, In X-Ray Identification and Crystal Structures of Clay Minerals: (Edited by Brown, G.) pp. 224–233. Mineral. Soc. London.

    Google Scholar 

  • Caillere, S. and Henin, S. (1948) Occurrences of sepiolite in the lizard serpentines: Nature 63, 962.

    Google Scholar 

  • Caillere, S. and Henin, S. (1961) Palygorskite. In X-Ray Identification and Crystal Structures of Clay Minerals: (Edited by Brown, G.) pp. 343–353. Mineral. Soc. London.

    Google Scholar 

  • Demangeon, P. and Salvayre, H. (1961) Sur la genese de palygorskite dans un calcaire dolomitique: Bull. Soc. France. Miner. Crist. 84, 201–202.

    Google Scholar 

  • Dorf, E. (1960) Climatic changes of the past and present: Am. Scientist 48, 341–364.

    Google Scholar 

  • Espenshade, G. and Spencer, C. (1963) Geology of phosphate deposits of northern Peninsular Florida: U.S. Geol. Sur. Bull. 1118, 115.

    Google Scholar 

  • Fersman, A. (1913) Zapiski Rossiiskoi Acad. Nauk. (Quoted in: Izbrannye Trudy 1, 1952). Also in: Memoires de l’Academie Imperiale des Sciences de Saint Peterbourg, Classe phisicomathematique, 32, No. 2.

  • Foster, W. and Feicht, F. (1946) Mineralogy of concretions from Pittsburgh coal seam with special reference to analcite: Am. Mineralogist 31, 357–364.

    Google Scholar 

  • Gremillion, L. (1965) The origin of attapulgite in the Miocene strata of Florida and Georgia: Unpublished Ph.D. thesis, Dept. of Geology, Florida State Univ., 159 p.

    Google Scholar 

  • Grim, R. (1933) Petrography of the fuller’s earth deposits, Olmstead, Illinois, with a brief study of some non-Illinois earths: Econ. Geology 29, 344–363.

    Article  Google Scholar 

  • Hast, N. (1956) A reaction between silica and some magnesium compounds at room temperatures and at +37°C: Arkiv Kemi 9, 343–360.

    Google Scholar 

  • Hathaway, J. and Sachs, P. (1965) Sepiolite and clinoptilo-lite from the mid-Atlantic Ridge: Am. Mineralogist 50, 852–867.

    Google Scholar 

  • Henderson, J., Jackson, M., Syers, J., Clayton, R. and Rex, R. (1971) Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites: Clays and Clay Minerals 19, 229–238.

    Article  Google Scholar 

  • Heron, S. and Johnson, H. (1966) Clay mineralogy, stratigraphy and structural setting of the Hawthorn Formation, Cooswahatchee District, South Carolina: Southeastern Geology 7, 51–63.

    Google Scholar 

  • Heystek, H. and Schmidt, E. (1953) The mineralogy of the attapulgite-montmorillonite deposit in the Springbok Flats, Transvaal: Trans. Geol. So. Africa 56, 99–115.

    Google Scholar 

  • Isphording, W. (1970) Late Tertiary paleoclimate of eastern United States: Am. Assoc. Petrol. Geol. Bull. 54, 334–343.

    Google Scholar 

  • Isphording, W. (1971) Provenance and petrography of Gulf Coast Miocene sediments. 15th Field Conf. Guidebook, Southeastern Geol. Soc, pp. 43–55.

    Google Scholar 

  • Jean, C. (1971) The neoformation of clay minerals in brackish and marine environments: Clays and Clay Minerals 9, 209–217.

    Article  Google Scholar 

  • Kerr, P. (1937) Attapulgus clay: Am. Mineralogist 22, 548.

    Google Scholar 

  • Lapparent, J. de (1935) An essential constituent of Fullers Earth: Comptes Rendus 201, 481–483.

    Google Scholar 

  • Lapparent, J. de (1936) Formule et schema structural de l’attapulgite: Comptes Rendus 202, 1728–1731.

    Google Scholar 

  • Lonchambon, H. (1935) Sur des constituents minéralogi-que essentials des argiles, en particular des terres à foulon: Comptes Rendus 201, 483–485.

    Google Scholar 

  • Loughnan, F. (1966) A comparative study of the Newcastle and Illawarra Coal Measure sediments of the Sydney Basin, New South Wales: J. Sed. Petrol. 36, 1016–1025.

    Article  Google Scholar 

  • Mackenzie, F. and Garreis, R. (1965) Silicates: reactivity with sea water: Science 150, 57–58.

    Article  Google Scholar 

  • Mansfield, G. (1940) Clay investigations in the southern states, 1934–1935: Introduction, U.S. Geol. Sur. Bull. 901, 9.

    Google Scholar 

  • McBride, E., Lindemann, W., and Freeman, P. (1968) Lithology and petrology of the Guedan (Catahoula) Formation in south Texas: Bur. Econ. Geol. Invest. 63, 122 p.

  • McClellan, G. (1964) Petrology of attapulgus clay in north Florida and southwest Georgia: Unpublished Ph.D. thesis, Dept. of Geology, Univ. of Illinois, 127 p.

    Google Scholar 

  • McLean, S., Allen, B. and Craig, J. (1972) The occurrence of sepiolite and attapulgite on the Southern High Plains: Clays and Clay Minerals 20, 143–149.

    Article  Google Scholar 

  • Midgley, H. (1959) A sepiolite from Mullion, Cornwall: Clay Minerals Bull. 4, 88–93.

    Article  Google Scholar 

  • Millot, G. (1957) Des cycles sedimentaires et cletrois modes de sedimentation argilleuse: Comptes Rendus 244, 2536–2539.

    Google Scholar 

  • Millot, G. (1962) Crystalline neoformation of clays and silica: Proc. Symp. Basic Sci. France-U.S., pp. 180–191 New York. (1960).

    Google Scholar 

  • Millot, G., Radier, H. and Bonifas, M. (1957) La sedimentation argileuse a attapulgite et montmorillonite: Bull. Soc. France 6, 425–433.

    Google Scholar 

  • Mumpton, F. and Roy, R. (1958) New data on sepiolite and attapulgite: Clays and Clay Minerals 5, 136–143: (Natl. Acad. Sci. Natl. Res. Con. Pub. 566).

    Article  Google Scholar 

  • Nagy, G. and Bradley, W. F. (1955) The structural scheme of sepiolite: Am. Mineralogist 40, 885–892.

    Google Scholar 

  • Osthaus, B. (1956) Kinetic studies on montmorillonite and nontronite by the acid-dissolution technique: Clays and Clay Minerals 4, 301–321 (Natl. Acad. Sci.-Natl. Res. Council Pub. 456).

    Article  Google Scholar 

  • Ovcharenko, F. (1964) Editor The Colloid Chemistry of Palygorskite. Israel program for scientific translations, Jerusalem, 101 p.

    Google Scholar 

  • Parry, W. and Reeves, C. (1968) Sepiolite from pluvial Mound Lake, Lynn and Terry Counties, Texas: Am. Mineralogist 53, 884–993.

    Google Scholar 

  • Reynolds, W. (1970) Mineralogy and stratigraphy of lower Tertiary clays and claystones of Alabama: J. Sed. Petrology 54, 829–838.

    Google Scholar 

  • Rogers, L., Martin, A., and Norrish, K. (1954) Palygorskite from Queensland: Miner. Mag. 30, 534–540.

    Google Scholar 

  • Schultz, L., Shepard, A., Blackmon, P. and Starkey, H. (1971) Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico: Clays and Clay Minerals 19, 137–150.

    Article  Google Scholar 

  • Serdyuchenko, D. (1949) Sepiolite from northern Caucasus (in Russian): Dokl. Acad. Nauk. SSSR 69, 577–580 (Chem. Abs. 45, 8411f, 1951).

    Google Scholar 

  • Shabayeva, Y. (1962) Palygorskite from the Paleogene beds of southern Turkmenia: Trans. Dokl. Acad. Sci. USSR, Am. Geol. Inst. 143, 94–97.

    Google Scholar 

  • Siffert, B. (1962) Quelques reations de la silice in solution: La formation des argiles: Mem. Ser. Carte Geol. Alsace-Lorraine 21, 1–16.

    Google Scholar 

  • Siffert, B. and Wey, R. (1962) Synthese d’une sepiolite à temperature ordinaire: Comptes Rendus 254, 1460–1462.

    Google Scholar 

  • Slansky, M., Camez, T. and Millot, G. (1959) Sedimentation argileuse et phosphatée au Dahomey: Bull. Soc. Geol. Fr. 1, 150–155.

    Google Scholar 

  • Swineford, A., Frye, J. and Leonard, A. (1955) Petrography of the late Tertiary volcanic ash falls in the Central Great Plains: J. Sed. Petrology 25, 243–261.

    Article  Google Scholar 

  • Teodorovitch, G. (1961) Authigenic Minerals in Sedimentary Rocks (Translation): Consultants Bureau, New York, 120 p.

    Book  Google Scholar 

  • Wise, W., Buie, B. and Weaver, F. (1972) Origin of deep sea cristobalite chert: Eclogae Geol. Helv. 65, 157–163.

    Google Scholar 

  • Wollast, R., Mackenzie, F. and Bricker, O. (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions: Am. Mineralogist 53, 1645–1661.

    Google Scholar 

  • Yusupova, S. (1955) Sepiolite from Darvaz (in Russian): Uchenye Zapiski Tadshik Univ. 6, 35–40 (Chem. Abs. 53, 7871f, 1959).

    Google Scholar 

  • Zayagin, B. (1967) Electron Diffraction Analysis of Clay Mineral Structures: Plenum Press, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isphording, W.C. Discussion of the Occurrence and Origin of Sedimentary Palygorskite-Sepiolite Deposits. Clays Clay Miner. 21, 391–401 (1973). https://doi.org/10.1346/CCMN.1973.0210515

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1973.0210515

Navigation