Skip to main content
Log in

Trioctahedral Smectite and Interstratified Chlorite/Smectite in Jurassic Strata of the Connecticut Valley

  • Published:
Clays and Clay Minerals

Abstract

Trioctahedral smectite and regularly interstratified chlorite/smectite in strata of the East Berlin Formation of the Connecticut Valley are largely restricted to black shale and gray mudstone deposited in alkaline, perennial lakes. The precursor of the mixed-layer clay appears to have been a smectite. Alkaline lake waters and inherited pore waters rich in magnesium favored the transformation of smectite to mixed-layer chlorite/smectite by fixation of brucitic interlayers into the smectite unit structure. Gray mudstones containing the mixed-layer chlorite/smectite are invariably underlain by magnesium-rich black shale—a possible source of Mg for the clay mineral transformations. The black shale is composed predominantly of Mg-rich trioctahedral smectite of probable authigenic origin.

Резюме

Триоктаэдрический смектит и регулярно внутринапластованный хлорит/смектит в пласте формации Восточного Берлина в Долине Коннектикута ограничены, в основном, до черной сланцеватой глины и серой иловатой глины, осажденных в щелочных непересыхающих озерах. Смектит кажется предшественником смешанно-слойной глины. Воды щелочных озер и наследственные пористые воды, богатые в магний, способствовали преобразованию смектита в смещаннослойный хлорит/смектит путем фиксации бруцитовых промежуточных слоев в элементарную структуру смектита. Черные сланцеватые глины, богатые в магний—возможные источники магния, используемые для преобразования глинистых минералов—неизменно располагаются под серыми иловатыми глинами, содержающими смешанно-слойный хлорит/смектит. Черная сланцеватая глина, в основном, состоит из богатого в магний триоктеэдрического смектита, вероятно, аутигенного начала. [Е.С.]

Resümee

Trioktaedrischer Smektit und regelmäßge Chlorit/Smektit-Wechsellagerungen sind in den Schichten der East Berlin Formation des Connecticut Valley hauptsächlich auf schwarzen Schieferton und grauen Tonstein beschränkt, die in alkalischen permanenten Seen abgelagert sind. Der Vorläufer der Wechsellagerung scheint ein Smektit gewesen zu sein. Alkalische Seewässer und Mg-reiche Porenwässer begänstigten die Umwandlung des Smektit in die Chlorit/Smektit-Wechsellagerung, indem brucitische Zwischenlagen in die Smektit-Struktur eingebaut wurden. Unter den grauen Tonsteinen, die die Chlorit/Smektit-Wechsellagerung enthalten, findet sich immer ein Mg-reicher schwarzer Schieferton, der eine mögliche Mg-Quelle für die Tonmineralumbildung ist. Der schwarze Schieferton besteht vor allem aus Mgreichem trioktaedrischem Smektit mit wahrscheinlich authigener Entstehung. [U.W.]

Résumé

La smectite trioctaèdre et la chlorite/smectite régulièrement interstratifiée dans les lits de la formation East Berlin de la vallée du Connecticut sont pour la plupart restrientes au shale noir et à l’argilite grise déposés dans des lacs alkalins perpétuels. Le précurseur de l’argile à couches mélangres semble avoir été une smectite. Les eaux alkalines du lac et les eaux héritées des pores, riches en magnésium, ont favorisé la transformation de la smectite en chlorite/smectite à couches mélangées par la fixation d’intercouches brucitiques dans la structure unitaire de la smectite. On trouve invariablement des shales noirs riches en magnésium, une source possible de Mg pour les transformations de minéral argileux, sous des argilites grises contenant la chlorite/smectite à couches mélangées. Le shale noir est composé surtout de smectite trioctaèdre riche en Mg et probablement d’origine authigénique. [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almon, W. R., Fullerton, L. B., and Davies, D. K. (1976) Pore space reduction in Cretaceous sandstones through chemical precipitation of clay minerals: J. Sed. Pet. 46, 89–96.

    Google Scholar 

  • April, R. H. (1978) Clay mineralogy and geochemistry of the Triassic-Jurassic sedimentary rocks of the Connecticut Valley: Ph.D. dissertation, Univ. Massachusetts, Amherst, Massachusetts, 206 pp. (unpublished).

  • April, R. H. (1980) Regularly interstratified chlorite/vermiculite in contact metamorphosed red beds, Newark Group, Connecticut Valley: Clays & Clay Minerals 28, 1–11.

    Article  Google Scholar 

  • Blatter, C. L., Roberson, H. E., and Thompson, G. R. (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana: Clays & Clay Minerals 21, 207–212.

    Article  Google Scholar 

  • Bradley, W. H. and Fahey, J. J. (1962) Occurrence of stevensite in the Green River Formation of Wyoming: Amer. Mineral. 47, 996–998.

    Google Scholar 

  • Brindley, G. W. (1961) Chlorite minerals: in The X-ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 544 pp.

    Google Scholar 

  • Caillère, S. and Hénin, S. (1951) The properties and identification of saponite (bowlingite): Clay Miner. 1, 138–144.

    Article  Google Scholar 

  • Carstea, D. D., Harward, M. E., and Know, E. G. (1970) Formation and stability of hydroxy-Mg interlayers in phyllosilicates: Clays & Clay Minerals 18, 213–222.

    Article  Google Scholar 

  • Droste, J. B. (1961) Clay minerals in playa sediments of the Mojave Desert, California: Calif. Div. Mines Spec. Report 69, 19 pp.

  • Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism—a review: Sedimentology 15, 281–346.

    Article  Google Scholar 

  • Dyni, J. R. (1976) Trioctahedral smectite in the Green River Formation, Duchesne County, Utah: U.S. Geol. Surv. Prof. Pap. 967, 14 pp.

  • Faust, G. T. and Murata, K. J. (1953) Stevensite, redefined as a member of the montmorillonite group: Amer. Mineral. 38, 973–987.

    Google Scholar 

  • Grim, R. E., Droste, J. B., and Bradley, W. F. (1960) A mixed-layer clay mineral associated with an evaporite: in Clays and Clay Minerals, Proc. 8th Natl. Conf., Norman, Oklahoma, 1959, Ada Swineford, ed., Pergamon Press, New York, 228–236.

    Google Scholar 

  • Harward, M. E., Carstea, D. D., and Sayegh, A. H. (1969) Properties of vermiculites and smectites—expansion and collapse: Clays & Clay Minerals 16, 437–447.

    Article  Google Scholar 

  • Hay, R. L. (1966) Zeolites and zeolitic reactions in sedimentary rocks: Geol. Soc. Amer. Spec. Pap. 85, 130 pp.

  • Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites: Amer. Mineral. 51, 825–854.

    Google Scholar 

  • Hubert, J. F., Reed, A. A., and Carey, P. J. (1976) Paleogeography of the East Berlin Formation, Newark Group, Connecticut Valley: Amer. J. Sci. 276, 1183–1207.

    Article  Google Scholar 

  • Hubert, J. F., Reed, A. A., Dowdall, W. L., and Gilchrist, J. M. (1978) Guide to the Red Beds of Central Connecticut: 1978 Field Guide, Eastern Section Soc. of Econ. Paleon. Mineral., Contr. 32, Dept. Geology, Univ. Massachusetts, Amherst, Massachusetts, 129 pp.

  • Millot, G. (1970) Geology of Clays: Springer-Verlag, New York, 429 pp.

    Book  Google Scholar 

  • Müller, G., Irion, G., and Forstner, U. (1972) Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment: Naturwissenschaften 59, 158–164.

    Article  Google Scholar 

  • Papke, K. G. (1972) A seprolite-rich playa deposit in southern Nevada: Clays & Clay Minerals 20, 211–215.

    Article  Google Scholar 

  • Papke, K. G. (1970) Montmorillonite, bentonite, and fuller’s earth deposits in Nevada: Nevada Bur. Mines Bull. 76, 47 pp.

  • Reynolds, R. C. and Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites: Clays & Clay Minerals 18, 25–36.

    Article  Google Scholar 

  • Suchecki, R. K., Perry, E. A., and Hubert, J. F. (1977) Clay petrology of Cambro-Ordovician continental margin, Cow Head Klippe, western Newfoundland: Clays & Clay Minerals 25, 163–170.

    Article  Google Scholar 

  • Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 1101–1116.

    Article  Google Scholar 

  • Velde, B. and Hower, J. (1963) Petrological significance of illite polymorphism in Paleozoic sedimentary rocks: Amer. Mineral. 48, 1239–1254.

    Google Scholar 

  • Velde, B. (1977) Clays and Clay Minerals in Natural and Synthetic Systems: Elsevier, Amsterdam, 218 pp.

    Google Scholar 

  • Walker, G. R. (1961) Vermiculite minerals: in The X-ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 544 pp.

    Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1975) The Chemistry of Clay Minerals: Elsevier, Amsterdam, 213 pp.

    Google Scholar 

  • Weaver, C. E. and Beck, K. C. (1977) Miocene of the S. E. United States—A Model for Chemical Sedimentation in a Peri-Marine Environment: Elsevier, Amsterdam, 234 pp.

    Book  Google Scholar 

  • Weaver, R. M., Jackson, M. L., and Syers, J. K. (1976) Clay mineral stability as related to activities of aluminum, silicon, and magnesium in matrix solution of montmorillonite-containing soils: Clays & Clay Minerals 24, 246–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

April, R.H. Trioctahedral Smectite and Interstratified Chlorite/Smectite in Jurassic Strata of the Connecticut Valley. Clays Clay Miner. 29, 31–39 (1981). https://doi.org/10.1346/CCMN.1981.0290105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1981.0290105

Key Words

Navigation