Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T21:42:29.812Z Has data issue: false hasContentIssue false

Influence of Fe(II) on the Formation of the Spinel Iron Oxide in Alkaline Medium

Published online by Cambridge University Press:  28 February 2024

J. P. Jolivet
Affiliation:
Chimie de la Matière Condensée (CNRS URA 1466), Université Pierre et Marie Curie, Paris 05, France
P. Belleville
Affiliation:
Chimie de la Matière Condensée (CNRS URA 1466), Université Pierre et Marie Curie, Paris 05, France
E. Tronc
Affiliation:
Chimie de la Matière Condensée (CNRS URA 1466), Université Pierre et Marie Curie, Paris 05, France
J. Livage
Affiliation:
Chimie de la Matière Condensée (CNRS URA 1466), Université Pierre et Marie Curie, Paris 05, France

Abstract

Fe(II) and Fe(III) in various proportions were coprecipitated by NH3 at pH ≈ 11. The Fe(II)/Fe(III) ratio (x) was varied from 0.10 to 0.50. After stabilization by aging at pH ≃ 8 in anaerobic conditions, hydrous precipitates were characterized by electron microscopy, Mössbauer spectroscopy, and kinetics of dissolution in acidic medium. At any x value, all stable products exhibited the structure of (oxidized) magnetite. For x ≤ 0.30, two distinct species were coexisting: the one (“m”) was made up of ca. 4nm-sized particles with a low Fe(II) content (Fe(II)/Fe(III) ≈ 0.07), and the other (“M”) consisted of particles of larger, more or less distributed sizes, and composition Fe(II)/Fe(III) ≈ 0.33; “M” increased relative amount with increasing x. For x ≥ 0.35, “M” was the only constituent and its Fe(II)/Fe(III) ratio was equal to x. “M” is identified with (nonstoichiometric) magnetite, whereas “m” is likely to be an oxyhydroxide. Mechanisms of formation are discussed, and a phase diagram is proposed which schematizes the evolution of the coprecipitation products with x and with time. Addition of Fe(II) after the precipitation of Fe(III), instead of coprecipitation, yielded very similar results.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chukhrov, F. V., Zvyagin, B. B., Gorshkov, A. I., Yermilova, L. P. and Balashova, V. V., 1973 Ferrihydrite Intl. Geol. Rev. 16 11311143 10.1080/00206817409471766.CrossRefGoogle Scholar
Coey, J M D and Khalafalla, D., 1972 Superparamagnetic γ-Fe2O3 Phys. Stat. Sol. 11 229241 10.1002/pssa.2210110125.CrossRefGoogle Scholar
Cornell, R. M., 1988 The influence of some divalent cations on the transformation of ferrihydrite to more crystalline products Clay Miner. 23 329332 10.1180/claymin.1988.023.3.10.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1987 Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media Clays & Clay Minerals 35 1120 10.1346/CCMN.1987.0350102.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1988 The influence of copper on the transformation of ferrihydrite (5Fe2O3 9H2O) into crystalline products in alkaline media Polyhedron 7 385391 10.1016/S0277-5387(00)80487-8.CrossRefGoogle Scholar
Daniels, J. M. and Rosencwaig, A., 1969 Mössbauer spectroscopy of stoichiometric and nonstoichiometric magnetite J. Phys. Chem. Solids 30 15611571 10.1016/0022-3697(69)90217-0.CrossRefGoogle Scholar
De Bakker, P M A De Grave, E., Vandenberghe, R. E. and Bowen, L. H., 1990 Mössbauer study of small-particle maghemite Hyperf. Interac. 54 493498 10.1007/BF02396078.CrossRefGoogle Scholar
Eggleton, R. A. and Fitzpatrick, R. W., 1988 Newdataand a revised structural model for ferrihydrite Clays & Clay Minerals 36 111124 10.1346/CCMN.1988.0360203.CrossRefGoogle Scholar
Fischer, W. R., Schlichting, E. and Schwertmann, U., 1973 Die Wirkung von zweiwertigem Eisen auf Lösung und Umwandlung von Eisen(III)-hydroxiden Pseudogley and Gley 3744.Google Scholar
Haneda, K. and Morrish, A. H., 1977 On the hyperfine field of γ-Fe2O3 small particles Phys. Lett. 64A 259262 10.1016/0375-9601(77)90736-8.CrossRefGoogle Scholar
Henry, M., Jolivet, J. P. and Livage, J., 1992 Aqueous chemistry of metal cations: Hydrolysis, condensation, and complexation Structure and Bonding 77 154206.Google Scholar
Jolivet, J. P. and Tronc, E., 1988 Interfacial electron transfer in colloidal spinel iron oxide. Conversion Fe3O4→γ-Fe2O3 in aqueous medium J. Colloid Interface Sci. 125 688701 10.1016/0021-9797(88)90036-7.CrossRefGoogle Scholar
Jolivet, J. P. Massart, R. and Fruchart, J. M., 1983 Synthèse et étude physicochimique de colloïdes magnétiques non surfactés en milieu aqueux Nouv. J. Chim. 7 325331.Google Scholar
Mann, S., Sparks, N H C Couling, S. B., Larcombe, M. C. and Frankel, R. B., 1989 Crystallochemical characterization of magnetic spinels prepared from aqueous solution J. Chem. Soc, Faraday Trans. 1 85 30333044 10.1039/f19898503033.CrossRefGoogle Scholar
Misawa, T., Hashimoto, K. and Shimodaira, S., 1974 The mechanism of formation of iron oxides and oxyhydroxides in aqueous solutions at room temperature Corrosion Sci. 14 131149 10.1016/S0010-938X(74)80051-X.CrossRefGoogle Scholar
Morup, S., Dumesic, J. A. and Topsøe, H., 1980 Magnetic microcrystals Applications of Mössbauer Spectroscopy 2 153.Google Scholar
Morup, S., Topsae, H. and Lipka, J., 1976 Modified theory for Mössbauer spectra of superparamagnetic particles: Application to Fe3O4 J. Physique 37 287290.Google Scholar
Murad, E., Bowen, L. H., Long, G. J. and Quin, T. G., 1988 The influence of crystallinity on magnetic ordering in natural ferrihydrites Clay Miner. 23 161173 10.1180/claymin.1988.023.2.04.CrossRefGoogle Scholar
Murad, E. and Johnston, J. H., 1987 Iron oxides and oxyhydroxides Mössbauer Spectroscopy Applied to Inorganic Chemistry 2 507582.Google Scholar
Murad, E. and Schwertmann, U., 1980 The Mössbauer spectrum of ferrihydrite and its relation to those of other iron oxides Amer. Mineral. 65 10441049.Google Scholar
Ramdani, A., Steinmetz, J., Gleitzer, C., Coey, J M D and Friedt, J. M., 1987 Perturbation de l’échange électronique rapide par les lacunes cationiques dans Fe3-xO4 (x < 0.09) J. Phys. Chem. Solids 48 217228 10.1016/0022-3697(87)90016-3.CrossRefGoogle Scholar
Sawatzky, G. A., Van der Woude, F. and Morrish, A. H., 1969 Recoilless-fraction ratios for Fe57 in octahedral and tetrahedral sites of a spinel and a garnet Phys. Rev. 183 383386 10.1103/PhysRev.183.383.CrossRefGoogle Scholar
Tamaura, Y., Buduan, P. V. and Katsura, T., 1981 Studies in the oxidation of iron (II) ion during formation of Fe3O4 and α-FeOOH by air oxidation of Fe(OH)2 suspensions J. Chem. Soc. Dalton Trans. 18071811.CrossRefGoogle Scholar
Tamaura, Y., Ito, K. and Katsura, T., 1983 Transformation of γ-FeOOH to Fe3O4 by adsorption of Fe(II) ion on 7-FeOOH J. Chem. Soc. Dalton Trans. 189194.CrossRefGoogle Scholar
Tronc, E. and Bonnin, D., 1985 Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy J. Physique Lett. 46 L437L443 10.1051/jphyslet:019850046010043700.CrossRefGoogle Scholar
Tronc, E., Belleville, P., Jolivet, J. P. and Livage, J., 1992 Transformation of ferric hydroxide into spinel by Fe(II) adsorption Langmuir 8 313319 10.1021/la00037a057.CrossRefGoogle Scholar