Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T09:32:19.224Z Has data issue: false hasContentIssue false

Quantitative Analysis of Mixtures of 1M And 2M1 Dioctahedral Micas by X-Ray Diffraction

Published online by Cambridge University Press:  28 February 2024

Rodney T. Tettenhorst
Affiliation:
Department of Geological Sciences, The Ohio State University, Columbus, Ohio 43210
Charles E. Corbató
Affiliation:
Department of Geological Sciences, The Ohio State University, Columbus, Ohio 43210

Abstract

Investigation of a naturally occurring mixture of dioctahedral micas prompted an examination of X-ray diffraction (XRD) techniques for obtaining quantitative estimates of 1M and 2M 1 mica proportions. A method for determining quantitative estimates has been developed that includes the effect of preferred orientation of mica particles as described by the March function. A diagram is presented from which the percentage of 2Mı and the March parameter (r) can be obtained from two peak-area ratios: 2.80 Å/5.0 Å and 2.80 Å/2.58 Å, which are measured on observed XRD patterns of mica mixtures. The ability of this peak-area ratio diagram to predict reasonably accurate proportions of 1M and 2Mı micas was tested by comparing calculated and observed XRD patterns over a range of 2θ values from 16° to 40° for size-fractionated mixtures. Lack of accurate crystal-structure data for dioctahedral 1M mica proved an impediment to obtaining improved quantitative estimates of mica proportions.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., (1980) Structures of layer silicates: in Crystal Structures of Clay Minerals and Their X-ray Identification, Brindley, G. W., and Brown, G., eds., Mineralogical Society, Monogr. 5, London.Google Scholar
Bailey, S. W., 1988 X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite Clays & Clay Minerals 36 193213 10.1346/CCMN.1988.0360301.CrossRefGoogle Scholar
Bargar, J., 1990 Crystal chemistry of a 2M1 muscovite .Google Scholar
Corbató, C. E. and Tettenhorst, R. T., 1982 Two examples of quantitative analysis by simulated X-ray powder diffraction patterns Clay Miner 17 393399 10.1180/claymin.1982.017.4.02.CrossRefGoogle Scholar
DiMarco, M. J., Ferrell, R. E. Jr. and Lowe, D. R., 1989 Polytypes of 2:1 dioctahedral micas in silicified volcaniclastic sandstones, Warrawoona Group, Pilbara Block, Western Australia Amer. J. Sci 289 649660 10.2475/ajs.289.5.649.CrossRefGoogle Scholar
Dollase, W. A., 1986 Correction ofintensities for preferred orientation in powder diffractometry: Application of the March model J. Appl. Crystallogr 19 267272 10.1107/S0021889886089458.CrossRefGoogle Scholar
Eberl, D. D., Srodon, J., Lee, M., Nadeau, P. H. and Northrop, H. R., 1987 Sericite from the Silverton Caldera, Colorado: Correlation among structure, composition, origin, and particle thickness Amer. Mineral 72 914934.Google Scholar
Foord, E. E., Martin, R. F., Fitzpatrick, J. J., Taggart, J. E. Jr. and Crock, J. G., 1991 Boromuscovite, a new member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego County, California Amer. Mineral 76 19982002.Google Scholar
Foscolos, A. E. and Kodama, H., 1974 Diagenesis of clay minerals from lower Cretaceous shales of north eastern British Columbia Clays & Clay Minerals 22 319335 10.1346/CCMN.1974.0220403.CrossRefGoogle Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Kisch, H. J., 1983 Mineralogy and petrology of burial dia-genesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks 25B 289493.Google Scholar
March, A., 1932 Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation: Z. Kristalogr 81 285297.Google Scholar
Maxwell, D. T. and Hower, J., 1967 High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series Amer. Mineral 52 843857.Google Scholar
Meunier, A. and Velde, B., 1989 Solid solutions in I/S mixed-layer minerals and illite Amer. Mineral 74 11061112.Google Scholar
Post, J. E. and Bish, D. L., 1989 Rietveld refinement of crystal structures using powder X-ray diffraction data Modern Powder Diffraction 20 277308 10.1515/9781501509018-012.CrossRefGoogle Scholar
Reynolds, R. C. Jr., 1963 Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fractions of Proterozoic carbonate rocks Geochim. Cosmochim. Acta 27 10971112 10.1016/0016-7037(63)90092-9.CrossRefGoogle Scholar
Rothbauer, R., 1971 Untersuchung eines 2M1-Muskovits mit Neutronenstrahlen Neues Jahrb. Mineral. Monatsh 4 143154.Google Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1975 Crystal structure refinement for 1M dioctahedral mica Soviet Phys. Crystallogr 20 332335.Google Scholar
Srodon, J., 1984 X-ray powder diffraction identification of illitic materials Clays & Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Srodon, J. and Eberl, D. D., 1984 Illite Micas 13 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Velde, B., 1965 Experimental determination of muscovite polymorph stabilities Amer. Mineral 50 436449.Google Scholar
Velde, B. and Hower, J., 1963 Petrological significance of illite polymorphism in Paleozoic sedimentary rocks Amer. Mineral 48 12391254.Google Scholar
Weaver, C. E. and Broekstra, B. R., 1984 Illite-mica Shale-Slate Metamorphism in Southern Appalachians 10 6797 10.1016/B978-0-444-42264-4.50009-8.CrossRefGoogle Scholar
Wilson, A. J. C., 1962 X-ray Optics 2nd ed. London Methuen & Co. Ltd..Google Scholar
Yoder, H. S. and Eugster, H. P., 1955 Synthetic and natural muscovites Geochim. Cosmochim. Acta 8 225280 10.1016/0016-7037(55)90001-6.CrossRefGoogle Scholar