Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T04:29:03.124Z Has data issue: false hasContentIssue false

Modeling Adsorption-Desorption Processes of Cd on Montmorillonite

Published online by Cambridge University Press:  28 February 2024

T. Undabeytia
Affiliation:
Seagram Center for Soil and Water Sciences, Faculty of Agriculture, P.O. Box 12, Rehovot 76100, Israel Instituto de Recursos Naturales y Agrobiologia, CSIC, Apdo 1052, Sevilla 41080, Spain
S. Nir
Affiliation:
Seagram Center for Soil and Water Sciences, Faculty of Agriculture, P.O. Box 12, Rehovot 76100, Israel
G. Rytwo
Affiliation:
Seagram Center for Soil and Water Sciences, Faculty of Agriculture, P.O. Box 12, Rehovot 76100, Israel MIGAL, Galilee Technological Center, Kyriat Shmona, 10200, Israel
E. Morillo
Affiliation:
Instituto de Recursos Naturales y Agrobiologia, CSIC, Apdo 1052, Sevilla 41080, Spain
C. Maqueda
Affiliation:
Instituto de Recursos Naturales y Agrobiologia, CSIC, Apdo 1052, Sevilla 41080, Spain

Abstract

Adsorption-desorption of Cd to Ca montmorillonite (SAz-1) was studied at concentrations ranging from 44.5 to 266.8 μM. An adsorption model was employed in the analysis of the data. The procedure consists of solving the electrostatic Gouy-Chapman equations and calculating adsorbed amounts of the cations as the sum of the cations residing in the double-layer region, and the cations chemically bound to the surface, in a closed system. The model also accounts explicitly for cation complexation in solution. The model yields good predictions for the adsorbed amounts of Cd, Ca and Mg, by employing binding coefficients from previous studies for the divalent cations and for Na, K and CdCl+. The model calculations also yield good predictions for the apparent hysteresis observed in the adsorbed amounts of Cd after each of 3 cycles of desorption. The apparent hysteresis is explained by the reduction in the total concentrations of Ca and Mg in desorption cycles, and the corresponding increase in the magnitude of the surface potential. Our estimates indicate that adsorption of Cd is mostly to planar, rather than edge sites of the clay mineral.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvero, R. Alba, M.D. Castro, M.A. and Trillo, J.M., 1994 Reversible migration of lithium in montmorillonites J Phys Chem 98 987853 10.1021/j100083a017.CrossRefGoogle Scholar
Basta, N.T. Pantone, D.J. and Tabatai, M.A., 1993 Path analysis of heavy metal adsorption by soil Agronomy J 85 851057 10.2134/agronj1993.00021962008500050018x.CrossRefGoogle Scholar
Christensen, T.H., 1989 Cadmium soil sorption at low concentrations. VIII. Correlation with soil parameters Water Air Soil Pollut 44 4482.Google Scholar
Comans, R.N.J., 1987 Adsorption, desorption and isotopic exchange of cadmium on illite: Evidence for complete reversibility Water Res 21 15731576 10.1016/0043-1354(87)90143-6.CrossRefGoogle Scholar
Fripiat, J.J. Cloos, P. and Poncelet, A., 1965 Comparaison entre les propriétés d’échange de la montmorillonite et d’une résine vis-à-vis des cations alcalins et alcalino-terreux. I. Réversibilité des processus Bull Soc Chim Fr 208215.Google Scholar
Garcia-Miragaya, J. Cardenas, R. and Page, L., 1986 Surface loading effect on Cd and Zn by kaolinite and montmorillonite from low concentration solutions Water Air Soil Pollut 27 27190.CrossRefGoogle Scholar
Gerritse, R.G. and Van Driel, W.J., 1984 The relationship between adsorption of trace metals, organic matter, and pH in temperate soils J Environ Qual 13 197204 10.2134/jeq1984.00472425001300020005x.CrossRefGoogle Scholar
Hirsch, D. Nir, S. and Banin, A., 1989 Prediction of cadmium complexation in solution and adsorption to montmorillonite Soil Sci Soc Am J 53 53721 10.2136/sssaj1989.03615995005300030012x.CrossRefGoogle Scholar
Hisschemöller, F.W., 1921 Les équilibres des permutites Recl Trav Chim Pays-Bas 40 40432.CrossRefGoogle Scholar
Inskeep, W.P. and Baham, J., 1983 Adsorption of Cd (II) and Cu (II) by Na-montmorillonite at low surface coverage Soil Sci Soc Am J 47 47665 10.2136/sssaj1983.03615995004700010009x.CrossRefGoogle Scholar
Kool, J.B. and Parker, J.C., 1987 Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties Water Resources Res 23 23114 10.1029/WR023i001p00105.CrossRefGoogle Scholar
Madrid, L. Diaz-Barrientos, E. and Contreras, M.C., 1991 Relationships between zinc and phosphate adsorption on montmorillonite and an iron oxyhidroxide Aust J Soil Res 29 29277.Google Scholar
Maes, A. and Cremers, A., 1975 Cation-exchange hysteresis in montmorillonite: A pH-dependent effect Soil Sci 119 119202 10.1097/00010694-197503000-00003.CrossRefGoogle Scholar
Morillo, E. and Maqueda, C., 1992 Simultaneous adsorption of chlordimeform and zinc on montmorillonite Sci Total Environ 123/124 133143 10.1016/0048-9697(92)90140-N.CrossRefGoogle Scholar
Mortvedt, J.J., 1987 Cadmium levels in soils and plants from some long-term fertility experiments in the United States of America J Environ Qual 16 16142 10.2134/jeq1987.00472425001600020008x.CrossRefGoogle Scholar
Navrot, J. Singer, A. and Banin, A., 1978 Adsorption of cadmium and its exchange characteristics in some Israeli soils J Soil Sci 29 29511 10.1111/j.1365-2389.1978.tb00799.x.CrossRefGoogle Scholar
Nir, S., 1984 A model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles J Colloid Interface Sci 102 102321 10.1016/0021-9797(84)90231-5.CrossRefGoogle Scholar
Nir, S., 1986 Specific and nonspecific cation adsorption to clays: Solution concentrations and surface potentials Soil Sci Soc Am J 50 5057.CrossRefGoogle Scholar
Nir, S. Hirsch, D. Navrot, J. and Banin, A., 1986 Specific adsorption of lithium, sodium, potassium and strontium to montmorillonite: Observations and predictions Soil Sci Soc Am J 50 4045 10.2136/sssaj1986.03615995005000010008x.CrossRefGoogle Scholar
Nir, S. Peled, R. and Lee, K., 1994 Analysis of particle uptake by cells: Binding to several receptors, equilibration time, endocytosis Colloids Surfaces (Part A) 89 4457.Google Scholar
Rytwo, G. Banin, A. and Nir, S., 1996 Exchange reactions in the Ca-Mg-Na-montmorillonite system Clays Clay Miner 44 44285 10.1346/CCMN.1996.0440212.CrossRefGoogle Scholar
Sanchez-Martin, M.J. and Sanchez-Camazano, M., 1993 Adsorption and mobility of cadmium in natural, uncultivated soils J Environ Qual 22 737742 10.2134/jeq1993.00472425002200040015x.CrossRefGoogle Scholar
Sposito, G. Holtzclaw, K.M. Charlet, L. Jouany, C. and Page, A.L., 1983 Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media Soil Sci Soc Am J 47 4756 10.2136/sssaj1983.03615995004700010009x.Google Scholar
Stadler, M. and Schindler, P.W., 1993 Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite Clays Clay Miner 41 41296.CrossRefGoogle Scholar
Taylor, M.D. and Theng, B.K.G., 1995 Sorption of cadmium by complexes of kaolinite with humic acid Commun Soil Sci Plant Anal 26 26776.CrossRefGoogle Scholar
Trillo, J.M. Alba, M.D. Alvero, R. and Castro, M.A., 1993 Reexpansion of collapsed Li-montmorillonites; evidence on the location of Li+ ions J Chem Soc Chem Commun 3/02354K 18091812 10.1039/c39930001809.CrossRefGoogle Scholar
Undabeytia, T. Morillo, E. and Maqueda, C., 1996 Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide Clay Miner 31 31490 10.1180/claymin.1996.031.4.05.CrossRefGoogle Scholar
Vanni, A. Gennaro, M.C. Fedele, A. Piccone, G. Petronio, B.M. Petruzelli, G. and Liberatori, A., 1994 Leachability of heavy metals in municipal sewage sludge particulate Environ Technol 15 1578 10.1080/09593339409385405.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data handbook for clay materials and other non-metallic minerals Oxford Pergamon.Google Scholar
Verbug, K. and Baveye, P., 1994 Hysteresis in the binary exchange of cations on 2:1 clay minerals: A critical review Clays Clay Miner 42 42220.Google Scholar
Zachara, J.M. and McKinley, J.P., 1993 Influence of hydrolysis on the sorption of metal cations by smectites: Importance of edge coordination reactions Aquatic Sci 55 250261 10.1007/BF00877270.CrossRefGoogle Scholar
Ziper, C. Komarneni, S. and Baker, D., 1988 Specific cadmium sorption in relation to the crystal chemistry of clay minerals Soil Sci Soc Am J 52 5253 10.2136/sssaj1988.03615995005200010009x.CrossRefGoogle Scholar