Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T04:31:37.828Z Has data issue: false hasContentIssue false

Effect of Al and Organic Acids on the Surface Chemistry of Kaolinite

Published online by Cambridge University Press:  28 February 2024

David B. Ward
Affiliation:
Jacobs Engineering Group Inc., 2155 Louisiana Blvd. Suite 10000, Albuquerque, New Mexico 87110
Patrick V. Brady
Affiliation:
Geochemistry Research (MS 0750), Sandia National Laboratories, Albuquerque, New Mexico 87185

Abstract

The cause of pH and ionic strength-dependent proton and hydroxyl adsorption onto kaolinite is specific binding at edge Al and Si sites, and it can be modeled as a function of temperature with a triple layer model (TLM) of the mineral-solution interface. Exchange of Al for protons and hydroxyls is observed at low pH, with a stoichiometry approaching 1:3 (Al:H+). Adsorption of organic acids from dilute solutions depends on: 1) solution pH; 2) the functionality of the acid; and, to a lesser extent, 3) temperature. Such adsorption may occur primarily at Al sites exposed on kaolinite edges, as indicated by sorption experiments on the constituent oxides, where negligible sorption was observed on SiO2 (quartz), but was significant on Al2O3 (corundum) surfaces. Under similar conditions, oxalate adsorbs more strongly than acetate or formate to aluminol sites.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balistrieri, L.S. and Murray, J.W., 1981 The surface chemistry of goethite (alpha FeOOH) in major ion seawater Am J Sci 281 788806 10.2475/ajs.281.6.788.CrossRefGoogle Scholar
Bethke, C.M., 1994 The geochemist’s workbench(™). A users guide to Rxn, Act2, Tact, React, and Gtplot Champaign, IL Univ of Illinois.Google Scholar
Bolt, G., 1957 Determination of the charge density of silica sols J Phys Chem 61 11661170 10.1021/j150555a007.CrossRefGoogle Scholar
Brady, P.V. Cygan, R.T. and Nagy, K.L., 1996 Molecular controls on kaolinite surface charge J Coll Interf Sci 183 183364 10.1006/jcis.1996.0557.CrossRefGoogle ScholarPubMed
Brady, P.V. House, W.A. and Brady, P.V., 1996 Surface-controlled dissolution and growth of minerals Physics and chemistry of mineral surfaces Boca Raton, FL CRC Pr. 225306.Google Scholar
Chan, D. Perram, J.W. and White, L.W., 1975 Regulation of surface potential at amphoteric surfaces during particle-particle interaction J Chem Soc, Faraday Trans 71 10461057 10.1039/f19757101046.CrossRefGoogle Scholar
Davies, C.W., 1962 Ion association Washington, DC Butterworth.Google Scholar
Davis, J.A. James, R.O. and Leckie, J.O., 1978 Surface ionization and complexation at the oxide-water interface. 1. Computation of electrical double layer properties in simple electrolytes J Colloid Interface Sci 63 63499 10.1016/S0021-9797(78)80009-5.CrossRefGoogle Scholar
Davis, J.A. Kent, D.B., Hochella, M.F. and White, A.F., 1990 Surface complexation modeling in aqueous chemistry Mineral-interface geochemistry Washington, DC Am Mineral Soc. 177260 10.1515/9781501509131-009.CrossRefGoogle Scholar
Dzombak, D.A. and Morel, F.M.M., 1990 Surface complexation modeling: Hydrous ferric oxide New York J. Wiley.Google Scholar
Grandstaff, D.E., 1986 The dissolution rate of forsteritic olivine from Hawaiian beach sand. 3rd Int Water-Rock Interaction Symp Geochem and Cosmochem Soc, Alberta Research Council 7274.Google Scholar
Hayes, K.F. Redden, G.W. and Leckie, J.O., 1990 Application of surface complexation models for radionuclide adsorption: Sensitivity analysis of model input parameters final report Washington, DC USNRC.CrossRefGoogle Scholar
Hayes, K.F. Redden, G.W. and Leckie, J.O., 1991 Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data J Colloid Interface Sci 142 448469 10.1016/0021-9797(91)90075-J.CrossRefGoogle Scholar
Herbelin, A.L. and Westall, J.C., 1994 FITEQL—A computer program for determination of chemical equilibrium constants from experimental data Oregon State Univ Chem Dept .Google Scholar
Kettler, R.M. Palmer, D.A. and Wesolowski, D.J., 1991 Dissociation quotients of oxalic acid in aqueous sodium-chloride media to 175 degrees C J Solution Chem 20 905927 10.1007/BF01074952.CrossRefGoogle Scholar
Machesky, M.L., Melchior, D.C. and Bassett, R.L., 1990 Influence of temperature on ion adsorption by hydrous metal oxides Chemical modeling in aqueous systems II. ACS Symp Series #416 Washington, DC ACS 262274.Google Scholar
Machesky, M.L. and Jacobs, P.F., 1991 Titration calorimetry of aqueous alumina suspensions, Part II. Discussion of enthalpy changes with pH and ionic strength Colloids and Surf 53 315328 10.1016/0166-6622(91)80144-D.CrossRefGoogle Scholar
Mast, M.A. and Drever, J.I., 1987 The effect of oxalate on the dissolution rates of oligoclase and tremolite Geochim Cosmochira Acta 51 512568.Google Scholar
Oelkers, E.H. Schott, J. and Devidal, J.L., 1994 The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions Geochim Cosmochim Acta 58 20112024 10.1016/0016-7037(94)90281-X.CrossRefGoogle Scholar
Siffert, B., 1962 Quelques reactions de la silice en solution: La formation des argiles Mem Serv Carte Geol 21 2186.Google Scholar
Small, J.S., Kharaka, Y. and Maest, A.S., 1992 Clay precipitation from oxalate-bearing solutions Water-rock interaction Rotterdam Balkema 345348.Google Scholar
Sposito, G., 1984 The surface chemistry of soils New York Oxford Univ Pr..Google Scholar
Stumm, W. Furrer, G. and Kunz, B., 1983 The role of surface coordination in precipitation and dissolution of mineral phases Croat Chim Acta 46 46611.Google Scholar
Stumm, W. and Morgan, J.J., 1981 Aquatic chemistry New York Wiley-Interscience.Google Scholar
Tewari, P.H. and McLean, A.W., 1972 Temperature dependence of point of zero charge of alumina and magnetite J Colloid Interface Sci 40 40272 10.1016/0021-9797(72)90016-1.CrossRefGoogle Scholar
Van Den Vlekkert, H. Bousse, L. and de Rooij, N., 1988 The temperature dependence of the surface potential at the A1203/electrolyte interface J Colloid Interface Sci 122 122345.CrossRefGoogle Scholar
Ward, D.B., 1995 Nickel adsorption on a natural sand and goethite, kaolinite, and quartz: Single- vs. multi-site models and the role of CO2 Albuquerque, NM Univ of New Mexico.Google Scholar
Weast, R.C., 1973 Handbook of chemistry and physics 61st edition Boca Raton, FL CRC Pr..Google Scholar
Wesolowski, D.J. and Palmer, D.A., 1992 Aluminum speciation and equilibria in aqueous solution: V. Gibbsite solubility at 50°C and pH 3–9 in 0.1 molal NaCl solutions Geochim Cosmochim Acta 58 582969.Google Scholar
Wieland, E. and Stumm, W., 1992 Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C Geochim Cosmochim Acta 56 563355 10.1016/0016-7037(92)90382-S.CrossRefGoogle Scholar
Xie, Z. and Walther, J.V., 1992 Incongruent dissolution and surface area of kaolinite Geochim Cosmochim Acta 56 563363 10.1016/0016-7037(92)90383-T.CrossRefGoogle Scholar
Yates, D.E. Levine, S. and Healy, T.W., 1974 Site-binding model of the electrical double layer at the oxide/water interface J Chem Soc London, Faraday Trans 70 18071818 10.1039/f19747001807.CrossRefGoogle Scholar