Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T03:22:54.232Z Has data issue: false hasContentIssue false

Preparation and Characterization of Fe-PILCs. Influence of the Synthesis Parameters

Published online by Cambridge University Press:  01 January 2024

José Luis Valverde
Affiliation:
Facultad de Ciencias Químicas/Escuela Técnica Agrícola, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
Amaya Romero*
Affiliation:
Facultad de Ciencias Químicas/Escuela Técnica Agrícola, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
Rubí Romero
Affiliation:
Facultad de Química, Universidad Autónoma del Estado de México, Paseo Cólon esq. Paseo Tollocan s/n, Toluca, Estado de México, México
Prado Belén García
Affiliation:
Facultad de Ciencias Químicas/Escuela Técnica Agrícola, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
María Luz Sánchez
Affiliation:
Facultad de Ciencias Químicas/Escuela Técnica Agrícola, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
Isaac Asencio
Affiliation:
Facultad de Ciencias Químicas/Escuela Técnica Agrícola, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
*
*E-mail address of corresponding author: amaya.romero@uclm.es

Abstract

Iron-pillared clays (Fe-PILCs) were synthesized from hydrolyzed FeCl3 solutions added to NaOH solutions using different synthesis conditions. X-ray diffraction, N2 adsorption-desorption, chemical analysis, thermogravimetric analysis, differential thermal analysis, temperature-programmed desorption of ammonia and temperature-programmed reduction were used to characterize the resulting Fe-pillared clays (Fe-PILCs). A higher degree of pillaring was obtained when the Fe content was adjusted to 60 mmoles of Fe/g of clay. It was observed that higher values of this ratio led to worse acidity and textural characteristics, a consequence of the probable formation of Fe oxides that could not only deposit on the surface but also block the pores formed during the pillaring process. Likewise, it was found that the amount of Fe that can be introduced depended on the OH/Fe ratios. Total surface and micropore area decreased and Fe content increased with increasing pillaring solution concentrations. Finally, all pillared samples prepared here were thermally stable at temperatures up to 400°C.

Type
Research Article
Copyright
Copyright © 2005, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baes, C.F. and Mesmer, R.E., (1976) The Hydrolysis of Cations New York Wiley.Google Scholar
Barrett, E.P. Joyner, L.G. and Halenda, P.P., (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms Journal of the American Chemical Society 73 373380 10.1021/ja01145a126.CrossRefGoogle Scholar
Burch, R., (1988) Introduction Catalysis Today 2 185186 10.1016/0920-5861(88)85001-6.CrossRefGoogle Scholar
Burch, R. and Warburton, C.I., (1987) Pillared clays as demetalization catalysts Applied Catalysis 33 395404 10.1016/S0166-9834(00)83070-5.CrossRefGoogle Scholar
Canizares, P. Valverde, J.L. Kou, M.R.S. and Molina, C.B., (1999) Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study Microporous and Mesoporous Materials 29 267281 10.1016/S1387-1811(98)00295-9.CrossRefGoogle Scholar
Carvalho, W.A., (2002) Cyclohexane oxidation in gas phase using iron and chromium pillared clays as catalysts Eclética Quimica 27 353365 10.1590/S0100-46702002000200029.CrossRefGoogle Scholar
Chen, H.-Y. and Sachtler, W.M.H., (1998) Promoted Fe/ZSM-5 catalysts prepared by sublimation: de-NOx activity and durability in H2O-rich stream Catalysis Letters 50 125130 10.1023/A:1019079305250.CrossRefGoogle Scholar
Cheng, L.S. and Yang, R.T., (1995) Monolayer cuprous chloride dispersed on pillared clays for olefin-paraffin separations by π-complexation Adsorption 1 6175 10.1007/BF00704146.CrossRefGoogle Scholar
Choudary, B.M. Kantam, M.L. Sateesh, M. Rao, K.K. and Santhi, P.L., (1997) Iron pillared clays — efficient catalysts for Friedel—Crafts reactions Applied Catalysis, A: General 149 257264 10.1016/S0926-860X(96)00310-9.CrossRefGoogle Scholar
Clearfield, A., (1994) Pillaring studies on the some layered oxides with Ruddlesden-copper related structures Journal of Solid State Chemistry 112 288294 10.1006/jssc.1994.1306.Google Scholar
Duxiao, J. Nongyue, H. Yuanying, Z. Chunxiang, X. Chunwei, Y. and Zuhong, L., (2001) Catalytic growth of carbon nanotubes from the internal surface of Fe-loading mesoporous molecular sieve materials Materials Chemistry and Physics 69 246251 10.1016/S0254-0584(00)00465-X.CrossRefGoogle Scholar
Guelou, E. Barrault, J. Fournier, J. and Tatibouet, J.-M., (2003) Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron Applied Catalysis, B: Environmental 44 18 10.1016/S0926-3373(03)00003-1.CrossRefGoogle Scholar
Horvath, G. and Kawazoe, K., (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon Journal of Chemical Engineering of Japan 16 470475 10.1252/jcej.16.470.CrossRefGoogle Scholar
Huerta, L. Meyer, A. and Choren, E., (2003) Synthesis, characterization and catalytic application for ethylbenzene dehydrogenation of an iron pillared clay Microporous and Mesoporous Materials 57 219227 10.1016/S1387-1811(02)00593-0.CrossRefGoogle Scholar
Hutson, N.D. Hoekstra, M.J. and Yang, R.T., (1999) Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity Microporous and Mesoporous Materials 28 447459 10.1016/S1387-1811(98)00334-5.CrossRefGoogle Scholar
Kaloidas, V. Koufopanos, C.A. Gangas, N.H. and Papanakos, N.G., (1995) Scale-up studies for the preparation of pillared layered clays at 1 kg per batch levels Microporous Materials 5 97 10.1016/0927-6513(95)00047-D.CrossRefGoogle Scholar
Kantam, M.L. Choudary, B.M. and Bharathi, B., (1999) Ring opening of oxiranes catalyzed by Mn-Salen immobilized mesoporous materials Synthetic Communications 29 11211128 10.1080/00397919908086081.CrossRefGoogle Scholar
Kloprogge, J.T., (1998) Synthesis of smectites and porous pillared clay catalysts: a review Journal of Porous Materials 5 541 10.1023/A:1009625913781.CrossRefGoogle Scholar
Kloprogge, J.T. Booy, E. Jansen, J.B.H. and Geus, J.W., (1994) The effect of thermal treatment on the properties of hydroxy-Al and hydroxy-Ga pillared montmorillonite and beidellite Clay Minerals 29 153167 10.1180/claymin.1994.029.2.02.CrossRefGoogle Scholar
Lee, H.-T. and Rhee, H.-K., (1999) Stability if Fe/ZSM-5 of NOx catalysts: Effect of iron loading and remaining Brönsted acid sites Catalysis Letters 61 7176 10.1023/A:1019044032219.CrossRefGoogle Scholar
Long, R.Q. and Yang, R.T., (1999) Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts Journal of Catalysis 186 254268 10.1006/jcat.1999.2558.CrossRefGoogle Scholar
Mishra, T. Parida, K.M. and Rao, S.B., (1996) Transition metal oxide pillared clay. 1. A comparative study of textural and acidic properties of Fe(III) pillared montmorillonite and pillared acid activated montmorillonite Journal of Colloid and Interface Science 183 176183 10.1006/jcis.1996.0532.CrossRefGoogle Scholar
Mokaya, R. and Jones, W., (1995) The micro structure of alumina pillared acid-activated clays Journal of Porous Materials 1 97110 10.1007/BF00486529.CrossRefGoogle Scholar
Molina, C.B., (2001) Sintesis y caracterización de arcillas pilareadas y su aplicación con catalizadores en la reducción selectiva de NOx .Google Scholar
Palinko, I. Lazar, K. Hannus, I. and Kirisci, I., (1996) Step toward nanoscale Fe moieties: intercalation of simple and Keggin-type iron-containing ions in-between the layers of Na-montmorillonite Journal of Physics and Chemistry of Solids 57 10671072 10.1016/0022-3697(95)00397-5.CrossRefGoogle Scholar
Rightor, E.G. Tzou, M.S. and Pinnavaia, T.J., (1991) Iron oxide pillared clay with large gallery height: synthesis and properties as a Fischer-Tropsch catalyst Journal of Catalysis 130 2940 10.1016/0021-9517(91)90089-M.CrossRefGoogle Scholar
Shabatai, J. Rosell, M. and Torkarz, M., (1984) Cross-linked smectites III. Synthesis and properties of hydroxyl-alumi-num hectorites and fluorhectorites Clays and Clay Minerals 35 99107 10.1346/CCMN.1984.0320203.CrossRefGoogle Scholar
Sharpe, A.G., (1993) Química Inorgánica Spain Reverté S.A., Barcelona.Google Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemieniewska, T., (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) Pure and Applied Chemistry 57 603619 10.1351/pac198557040603.CrossRefGoogle Scholar
Sprung, R. Davis, M.E. Kauffman, J.S. and Dybowski, C., (1990) Pillaring of magadiite with silicate species Industrial & Engineering Chemistry Research 29 213220 10.1021/ie00098a011.CrossRefGoogle Scholar
Tzou, M.S. and Pinnavaia, T.J., (1983) Chromia pillared clays Catalysis Today 2 243259 10.1016/0920-5861(88)85007-7.CrossRefGoogle Scholar
Valverde, J.L. Sanchez, P. Dorado, F. Molina, C.B. and Romero, A., (2002) Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaring agent Microporous and Mesoporous Materials 54 155165 10.1016/S1387-1811(02)00378-5.CrossRefGoogle Scholar
Valverde, J.L. Sanchez, P. Dorado, F. Asencio, I. and Romero, A., (2003) Preparation and characterization of Ti-pillared clays using Ti alkoxides. Influence of the synthesis parameters Clays and Clay Minerals 51 4151 10.1346/CCMN.2003.510105.CrossRefGoogle Scholar
Van Olphen, H., (1963) An Introduction to Clay Colloid Chemistry 2nd edition New York Wiley.Google Scholar
Webb, P.A. and Orr, C., (1997) Analytical Methods in Fine Particle Technology 1st edition Georgia, USA Micromeritics Instrument Corp. Norcross.Google Scholar
Yamanaka, S. Nishihara, T. Hattori, M. and Suzuki, Y., (1987) Preparation and properties of titania pillared clay Materials Chemistry and Physics 17 87101 10.1016/0254-0584(87)90050-2.CrossRefGoogle Scholar
Yang, R.T. Chen, J.P. Kikkinides, E.S. Cheng, L.S. and Cichanowicz, J.E., (1992) Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia Industrial & Engineering Chemistry Research 31 14401445 10.1021/ie00006a003.CrossRefGoogle Scholar
Zurita, M.J. Vitale, G. De Goldwasser, M.R. Rojas, D. and Garcia, J.J., (1996) Fe-pillared clays: A combination of zeolite shape selectivity and iron activity in the CO hydrogenation reaction Journal of Molecular Catalysis 107 175183 10.1016/1381-1169(95)00218-9.CrossRefGoogle Scholar