Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T19:47:08.842Z Has data issue: false hasContentIssue false

Hydrothermal synthesis, between 75 and 150°C, of High-charge, ferric nontronites

Published online by Cambridge University Press:  01 January 2024

Alain Decarreau*
Affiliation:
Université de Poitiers, UMR 6532 HydrASA CNRS/INSU, 40 Av. Recteur Pineau, F86022 Poitiers cedex, France
Sabine Petit
Affiliation:
Université de Poitiers, UMR 6532 HydrASA CNRS/INSU, 40 Av. Recteur Pineau, F86022 Poitiers cedex, France
François Martin
Affiliation:
ERT 1074 CNRS Géomatériaux, LMTG-OMP-UPS-IRD-CNRS, 14 Avenue Edouard Belin, F31400 Toulouse, France
François Farges
Affiliation:
USM 201 - UMR.CNRS 7160, Muséum National d’Histoire Naturelle, 61 rue Buffon, F75005 Paris, France
Philippe Vieillard
Affiliation:
Université de Poitiers, UMR 6532 HydrASA CNRS/INSU, 40 Av. Recteur Pineau, F86022 Poitiers cedex, France
Emmanuel Joussein
Affiliation:
Université de Limoges, UMR 6532 HydrASA CNRS/INSU, 123 Av. A. Thomas, F87060 Limoges cedex, France
*
* E-mail address of corresponding author: alain.decarreau@hydrasa.univ-poitiers.fr

Abstract

High-charge nontronites were synthesized at 75, 90, 100, 110, 125, and 150°C from a silicoferrous starting gel with Si2FeNa2O6.nH2O composition. This gel was oxidized in contact with air and then hydrothermally treated, for a period of 4 weeks, under equilibrium water pressure. The synthesized nontronites were similar to each other, regardless of the synthesis temperature. Their structural formula, obtained from chemical analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR), Mössbauer, and X-ray absorption fine structure spectroscopies is: (Si3.25Fe0.753+)Fe23+O10(OH)2Na0.75$\left( {{\rm{S}}{{\rm{i}}_{3.25}}{\rm{Fe}}_{0.75}^{3 + }} \right){\rm{Fe}}_2^{3 + }{{\rm{O}}_{10}}{\left( {{\rm{OH}}} \right)_2}{\rm{N}}{{\rm{a}}_{0.75}}$. A strictly ferric end-member of the nontronite series was therefore synthesized for the first time. The uncommon chemistry of the synthesized nontronites, notably the high level of Fe-for-Si substitution, induced particular XRD, FTIR, and differential thermal analysis-thermogravimetric analysis data. The ethylene glycol expandability of the synthetic nontronites was linked to their crystallinity and depended on the nature of the interlayer cation, moving from smectite to vermiculite-like behavior. As the synthesis temperature increased, the crystallinity of the synthesized clays increased. The nontronite obtained at 150°C had the ‘best crystallinity’, which cannot be improved by increasing synthesis time or temperature.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badaut, D. Decarreau, A. and Besson, G., 1992 Ferripyrophyllite and related Fe3+ rich 2:1 clays in recent deposits of Atlantis II deep, Read Sea Clay Minerals 27 227244 10.1180/claymin.1992.027.2.07.10.1180/claymin.1992.027.2.07CrossRefGoogle Scholar
Bailey, S.W., Brindley, G.W. Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1124.Google Scholar
Besson, G. and Drits, V., 1997 Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the stretching bands Clays and Clay Minerals 45 158169 10.1346/CCMN.1997.0450204.10.1346/CCMN.1997.0450204CrossRefGoogle Scholar
Besson, G. Bookin, A.S. Dainyak, L.G. Rautureau, M. Tsipursky, S.I. Tcoubar, C. and Drits, V.A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites Journal of Applied Crystallography 16 374383 10.1107/S0021889883010651.10.1107/S0021889883010651CrossRefGoogle Scholar
Bonnin, D., 1981 Propriétés magnétiques liées aux désordres bidimensionnels dans un silicate lamellaire ferrique: la nontronite France Université Paris 6 82 pp.Google Scholar
Brigatti, M., 1983 Relationships between composition and structure in Fe-rich smectites Clay Minerals 18 177186 10.1180/claymin.1983.018.2.06.10.1180/claymin.1983.018.2.06CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.10.1180/mono-5CrossRefGoogle Scholar
Calas, G. and Petiau, J., 1983 Coordination of iron in oxide glasses through high resolution K-edge spectra: information from the pre-edge Solid State Communications 48 625629 10.1016/0038-1098(83)90530-6.10.1016/0038-1098(83)90530-6CrossRefGoogle Scholar
Carrado, K.A. Decarreau, A. Petit, S. Bergaya, F. Lagaly, G., Bergaya, F. Theng, B.K.G. Lagaly, G., 2006 Synthetic clay minerals and purification of natural clays Handbook of Clay Science Amsterdam Elsevier 115139 10.1016/S1572-4352(05)01004-4.10.1016/S1572-4352(05)01004-4CrossRefGoogle Scholar
Chukhrov, F.V. Zvyagin, B.B. Drits, V.A. Gorshov, A.I. Ermilova, L.P. Goilo, E.A. Rudnistskaya, E.S., Mortland, M.M. Farmer, V.C., 1979 The ferric analogue of pyrophyllite and related phases Proceedings of the International Clay Conference, Oxford, 1978 Amsterdam Elsevier 5564.Google Scholar
Coey, J.M.D., 1980 Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy Atomic Energy Review 18 73124.Google Scholar
Coey, J.M.D. and Long, G.J., 1984 Mössbauer spectroscopy of silicate minerals Mössbauer Spectroscopy Applied to Inorganic Chemistry New York Plenum Press 443509 10.1007/978-1-4899-0462-1_14.10.1007/978-1-4899-0462-1_14CrossRefGoogle Scholar
Coey, J.M.D. Chukhrov, F.V. and Zvyagin, B.B., 1984 Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophyllite Clays and Clay Minerals 32 198204 10.1346/CCMN.1984.0320307.10.1346/CCMN.1984.0320307CrossRefGoogle Scholar
Daynyak, L.G. and Drits, V.A., 1987 Interpretation of Mössbauer spectra of nontronite, celadonite and glauconite Clays and Clay Minerals 35 363372 10.1346/CCMN.1987.0350506.10.1346/CCMN.1987.0350506CrossRefGoogle Scholar
Daynyak, L.G. Bookin, A.S. Drits, V.A. and Tsipursky, S.I., 1981 Mössbauer and electron diffraction study of cation distribution in celadonite Acta Crystallographica A37 C362 (suppl.).Google Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions Clay Minerals 21 861877 10.1180/claymin.1986.021.5.02.10.1180/claymin.1986.021.5.02CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crysytallogenesis of ferric smectite by evolution of Si-Fe coprecipitation in oxidizing conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.10.1180/claymin.1987.022.2.09CrossRefGoogle Scholar
Decarreau, A. Petit, S. Viellard, P.h. and Dabert, N., 2004 Hydrothermal synthesis of aegirine at 200°C European Journal of Mineralogy 16 8590 10.1127/0935-1221/2004/0016-0085.10.1127/0935-1221/2004/0016-0085CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.10.1346/CCMN.1995.0430608CrossRefGoogle Scholar
Eggleton, R.A., 1977 Nontronite: chemistry and X-ray diffraction Clay Minerals 12 181194 10.1180/claymin.1977.012.3.01.10.1180/claymin.1977.012.3.01CrossRefGoogle Scholar
Farges, F. Lefrère, Y. Rossano, S. Berthereau, A. Calas, G. and Brown, GE Jr., 2004 The effect of redox state on the local environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study Journal of Non-Crystalline Solids 344 176188 10.1016/j.jnoncrysol.2004.07.050.10.1016/j.jnoncrysol.2004.07.050CrossRefGoogle Scholar
Farmer, V.C. Krishnamurti, G.S.R. and Huang, P.M., 1991 Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in calcareous environment Clays and Clay Minerals 39 561570 10.1346/CCMN.1991.0390601.10.1346/CCMN.1991.0390601CrossRefGoogle Scholar
Fialips, C.-I. Huo, D. Yan, L. Wu, J. and Stucki, J.W., 2002 Effect of oxidation state on the IR spectra of Garfield nontronite American Mineralogist 87 630641 10.2138/am-2002-5-605.10.2138/am-2002-5-605CrossRefGoogle Scholar
Gailhanou, H., 2005 Détermination expérimentale des propriétés thermodynamiques et étude des nanostructures de minéraux argileux Aix en Provence, France Université Aix-Marseille III 262 pp.Google Scholar
Gates, W.P. and Kloprogge, J.T., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado The Clay Minerals Society 125168.Google Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239 10.1346/000986002760832829.10.1346/000986002760832829CrossRefGoogle Scholar
Gillot, F. Righi, D. and Räisänen, M.L., 2001 Layer-charge evaluation of expandable clays from a chronosequence of podzols in Finland using an alkylammmonium method Clay Minerals 36 571584 10.1180/0009855013640010.10.1180/0009855013640010CrossRefGoogle Scholar
Goodman, B.A., 1976 The effect of lattice substitutions on the derivation of quantitative site populations from Mössbauer spectra of 2:1 layer lattice silicates Journal de Physique Colloque C637 819823.Google Scholar
Goodman, B.A., 1978 The Mössbauer spectra of nontronite: consideration of an alternative assignment Clays and Clay Minerals 26 177178 10.1346/CCMN.1978.0260215.10.1346/CCMN.1978.0260215CrossRefGoogle Scholar
Goodman, B.A. Russel, J.D. and Fraser, A.R., 1976 A Mössbauer and I.R. spectroscopy study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.10.1346/CCMN.1976.0240201CrossRefGoogle Scholar
Harder, H., 1976 Nontronite synthesis at low temperature Chemical Geology 18 169180 10.1016/0009-2541(76)90001-2.10.1016/0009-2541(76)90001-2CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Physics and Chemistry of Minerals 7 223238 10.1007/BF00311893.10.1007/BF00311893CrossRefGoogle Scholar
Iriarte, I. Petit, S. Huertas, F.J. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., 2005 Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals 53 110 10.1346/CCMN.2005.0530101.10.1346/CCMN.2005.0530101CrossRefGoogle Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., 2000 Geology and preliminary characterisation of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia Clays and Clay Minerals 48 537548 10.1346/CCMN.2000.0480506.10.1346/CCMN.2000.0480506CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529544 10.1346/CCMN.1999.0470501.10.1346/CCMN.1999.0470501CrossRefGoogle Scholar
Lagaly, G. and Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado, USA The Clay Minerals Society 146.Google Scholar
Lantenois, S. Beny, J.M. Muller, F. and Campallier, R., 2007 Integration of Fe in natural and synthetic Al-pyrophyllites: an infrared spectroscopy study Clay Minerals 42 129141 10.1180/claymin.2007.042.1.09.10.1180/claymin.2007.042.1.09CrossRefGoogle Scholar
Luca, V., 1991 Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mössbauer spectroscopy Clays and Clay Minerals 39 467477 10.1346/CCMN.1991.0390502.10.1346/CCMN.1991.0390502CrossRefGoogle Scholar
Madejová, J. Komadel, P. and Čičel, B., 1994 Infrared study of octahedral site populations in smectites Clay Minerals 29 319326 10.1180/claymin.1994.029.3.03.10.1180/claymin.1994.029.3.03CrossRefGoogle Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis (Mackenzie, R.C., editor). Academic Press, London.Google Scholar
Manceau, A. Chateigner, D. and Gates, W.P., 1998 Polarized EXAFS, distance-valance least-squares modeling (DLVS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite Physics and Chemistry of Minerals 25 347365 10.1007/s002690050125.10.1007/s002690050125CrossRefGoogle Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., 2000 Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites American. Mineralogist 85 133152 10.2138/am-2000-0114.10.2138/am-2000-0114CrossRefGoogle Scholar
Mineeva, R.M., 1978 Relationship between Mössbauer spectra and defect structure in biotites from electric gradient calculations Clays and Clay Minerals 2 267277.Google Scholar
Mizutani, T. Fukushima, Y. Okada, A. Kamigaito, O. and Kobayahi, T., 1991 Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy Clays and Clay Minerals 39 381386 10.1346/CCMN.1991.0390407.10.1346/CCMN.1991.0390407CrossRefGoogle Scholar
Muller, F. Drits, V.A. Plançon, A. and Robert, J.L., 2000 Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions Clays and Clay Minerals 48 572585 10.1346/CCMN.2000.0480510.10.1346/CCMN.2000.0480510CrossRefGoogle Scholar
Nagase, Takako Iwasaki, Takeshi Ebina, Takeo Hayashi, Hiromichi Onodera, Yoshio and Dutta, Niranjan Chandra, 1999 Hydrothermal Synthesis of Fe-montmorillonite in Si-Fe-Mg System Chemistry Letters 28 4 303304 10.1246/cl.1999.303.10.1246/cl.1999.303CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charge of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.10.1180/claymin.1990.025.1.05CrossRefGoogle Scholar
Rancourt, D.G. McDonald, A.M. Lalonde, A.E. and Ping, J.Y., 1993 Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals American Mineralogist 78 17.Google Scholar
Reynolds, R.C., 1985 NEWMOD: A Computer Program for the Calculation of One- dimensional Diffraction Powders of Mixed-Layer Clays 8 Brook Rd., Hanover, New Hampshire 03755 USA Published by the author, R.C. Reynolds 315 pp.Google Scholar
Slominskaya, M.V. Besson, G. Dainyak, L.G. Tchoubar, C. and Drits, V.A., 1986 Interpretation of the IR spectra of celadonites and glauconites in the region of the OH-stretching frequencies Clay Minerals 21 377388 10.1180/claymin.1986.021.3.09.10.1180/claymin.1986.021.3.09CrossRefGoogle Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.10.1346/CCMN.1977.0250310CrossRefGoogle Scholar
Tardy, Y. and Fritz, B., 1981 An ideal solution model for calculating solubility of clay minerals Clay Minerals 16 361373 10.1180/claymin.1981.016.4.05.10.1180/claymin.1981.016.4.05CrossRefGoogle Scholar
Thompson, J B, 1955 The thermodynamic basis for the mineral facies concept American Journal of Science 53 65103 10.2475/ajs.253.2.65.10.2475/ajs.253.2.65CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction Clay Minerals 19 177192 10.1180/claymin.1984.019.2.05.10.1180/claymin.1984.019.2.05CrossRefGoogle Scholar
Vieillard, P., 2000 A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale Clays and Clay Minerals 48 459473 10.1346/CCMN.2000.0480406.10.1346/CCMN.2000.0480406CrossRefGoogle Scholar
Vieillard, P., 2002 A new method for the prediction of Gibbs free energies of formation of phyllosilicates (10 Å and 14 Å) based on the electronegativity scale Clays and Clay Minerals 50 352363 10.1346/00098600260358120.10.1346/00098600260358120CrossRefGoogle Scholar
Westre, T.E. Kennepohl, P. de Witt, J. Hedman, B. Hodgson, K.O. and Solomon, E.I., 1997 A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes Journal of the American Chemical Society 119 62976314 10.1021/ja964352a.10.1021/ja964352aCrossRefGoogle Scholar
Wilke, M. Farges, F. Petit, P.-E. Brown, GE Jr. and Martin, F., 2001 Oxidation state and coordination of Fe in minerals: an Fe K-XANES study American Mineralogist 86 714730 10.2138/am-2001-5-612.10.2138/am-2001-5-612CrossRefGoogle Scholar
Zviagina, B. McCarty, D.K. Środoń, J. and Drits, V.A., 2004 Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations Clays and Clay Minerals 52 399410 10.1346/CCMN.2004.0520401.10.1346/CCMN.2004.0520401CrossRefGoogle Scholar