Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Asymmetric catalysis in aqueous media

  • Shū Kobayashi

Abstract

Lewis acid catalysis has attracted much attention in organic synthesis because of unique reactivity and selectivity attained under mild conditions. Although various kinds of Lewis acids have been developed and applied in industry, these Lewis acids must be generally used under strictly anhydrous conditions. The presence of even a small amount of water handles the reactions owing to preferential reactions of the Lewis acids with water rather than the substrates. In contrast, rare earth and other metal complexes have been found to be water-compatible. Several catalytic asymmetric reactions in aqueous media, including hydroxymethylation of silicon enolates with an aqueous solution of formaldehyde in the presence of Sc(OTf)3-chiral bipyridine ligand or Bi(OTf)3-chiral bipyridine ligand, Sc- or Bi-catalyzed asymmetric meso-epoxide ring-opening reactions with amines, and asymmetric Mannich-type reactions of silicon enolates with N-acylhydrazones in the presence of a chiral Zn catalyst have been developed. Water plays key roles in these asymmetric reactions.


Conference

International Conference on Organic Synthesis (ICOS-16), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 16th, Mérida, Yucatán, México, 2006-06-11–2006-06-15


References

1. (a) C.-J. Li, T.-H. Chan. Organic Reactions in Aqueous Media, John Wiley, New York (1997);Search in Google Scholar

1. (b) Organic Synthesis in Water, P. A. Grieco (Ed.), Blackie Academic, London (1998);Search in Google Scholar

1. (c) doi:10.1021/cr010122p, U. M. Lindstroem. Chem. Rev. 102, 2751 (2002);Search in Google Scholar

1. (d) doi:10.1002/1615-4169(200206)344:3/4<221::AID-ADSC221>3.0.CO;2-N, D. Sinou. Adv. Synth. Catal. 344, 237 (2002);Search in Google Scholar

1. (e) doi:10.1021/cr030009u, C.-J. Li. Chem. Rev. 105, 3095 (2005).Search in Google Scholar

2. (a) D. Schinzer (Ed.). Selectivities in Lewis Acid Promoted Reactions, Kluwer Academic, Dordrecht (1989);10.1007/978-94-009-2464-2Search in Google Scholar

2. (b) H. Yamamoto (Ed.). Lewis Acids in Organic Synthesis, Wiley-VCH, Weinheim (2000);10.1002/9783527618309Search in Google Scholar

2. (c) R. W. Hay. "Lewis acid catalysis and the reactions of coordinated ligands", in Comprehensive Coordination Chemistry, Vol. 6, G. Wilkinson, R. D. Gillard, J. A. McCleverty (Eds.), p. 411, Pergamon Press, Oxford (1987).Search in Google Scholar

3. (a) doi:10.1007/3-540-69801-9_2, S. Kobayashi. "Lanthanide triflate-catalyzed carbon-carbon bond-forming reactions in organic synthesis", in Lanthanides: Chemistry and Use in Organic Synthesis, S. Kobayashi (Ed.), p. 63, Springer, Heidelberg (1999);Search in Google Scholar

3. (b) doi:10.1002/(SICI)1099-0690(199901)1999:1<15::AID-EJOC15>3.0.CO;2-B, S. Kobayashi. Eur. J. Org. Chem. 15 (1999);Search in Google Scholar

3. (c) doi:10.1055/s-1994-22976, S.Kobayashi. Synlett 689 (1994);Search in Google Scholar

3. (d) doi:10.1021/cr010289i, S. Kobayashi, M. Sugiura, H. Kitagawa, W. W.-L. Lam. Chem. Rev. 102, 2227 (2002).Search in Google Scholar

4. (a) doi:10.1246/cl.1991.2187, S. Kobayashi. Chem. Lett. 2187 (1991);Search in Google Scholar

4. (b) doi:10.1021/jo00092a017, S. Kobayashi, I. Hachiya. J. Org. Chem. 59, 3590 (1994).Search in Google Scholar

5. doi:10.1021/ja980715q, S. Kobayashi, S. Nagayama, T. Busujima. J. Am. Chem. Soc. 120, 8287 (1998).Search in Google Scholar

6. (a) C. F. Baes Jr., R. E. Mesmer. The Hydrolysis of Cations, p. 129, John Wiley, New York (1976);Search in Google Scholar

6. (b) K. B. Yatsimirksii, V. P. Vasil'ev. Instability Constants of Complex Compounds, Pergamon, New York (1960);Search in Google Scholar

6. (c) Coordination Chemistry, ACS Monograph 174, Vol. 2, A. E. Martell (Ed.), American Chemical Society, Washington, DC (1978).Search in Google Scholar

7. doi:10.1021/jo015564f, Fringuelli and coworkers reported use of Al(III), Ti(IV), and Sn(IV) as Lewis acids for epoxide opening reactions in acidic water whose pH is adjusted by adding H2SO4. F. Fringuelli, F. Pizzo, L. Vaccaro. J. Org. Chem. 66, 3554 (2001).Search in Google Scholar

8. B. Cornils, W. A. Herrmann (Eds.). Aqueous-Phase Organometallic Catalysis, 2nd ed., Wiley-VCH, Weinheim (2004).10.1002/3527602488Search in Google Scholar

9. doi:10.1002/1521-3765(20020916)8:18<4094::AID-CHEM4094>3.0.CO;2-G, K. Manabe, S. Kobayashi. Chem. Eur. J. 8, 4094 (2002).Search in Google Scholar

10. (a) doi:10.1246/cl.1999.71, S. Kobayashi, S. Nagayama, T. Busujima. Chem. Lett. 71 (1999);Search in Google Scholar

10. (b) doi:10.1021/ja001234l, S.Nagayama, S. Kobayashi. J. Am. Chem. Soc. 122, 11531 (2000);Search in Google Scholar

10. (c) doi:10.1021/ja026094p, S. Kobayashi, T. Hamada, K. Manabe. J. Am. Chem. Soc. 124, 5640 (2002);Search in Google Scholar

10. (d) doi:10.1021/ja028698z, T. Hamada, K. Manabe, S. Ishikawa, S.Nagayama, M. Shiro, S. Kobayashi. J. Am. Chem. Soc. 125, 2989 (2003);Search in Google Scholar

10. (e) doi:10.1002/anie.200351778, T. Hamada, K.Manabe, S. Kobayashi. Angew. Chem., Int. Ed. 42, 3927 (2003);Search in Google Scholar

10. (f) doi:10.1021/ja048607t, T. Hamada, K. Manabe, S. Kobayashi. J. Am. Chem. Soc. 126, 7768 (2004);Search in Google Scholar

10. (g) doi:10.1002/chem.200500673, T. Hamada, K. Manabe, S. Kobayashi. Chem. Eur. J. 12, 1205 (2006);Search in Google Scholar

10. (h) doi:10.1021/ol051546z, S. Azoulay, K. Manabe, S. Kobayashi. Org. Lett. 7, 4593 (2005);Search in Google Scholar

10. (i) C. Ogawa, S. Azoulay, S. Kobayashi. Heterocycles 66, 201 (2005).10.3987/COM-05-S(K)75Search in Google Scholar

11. (a) M. Fujii, Y. Sato, T.Aida, M. Yoshihara. Chem. Express 7, 309 (1992);Search in Google Scholar

11. (b) doi:10.1039/a706662g, R. Kuwano, H. Miyazaki, Y. Ito. Chem. Commun. 71 (1998);Search in Google Scholar

11. (c) doi:10.1002/anie.200352724, H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto. Angew. Chem., Int. Ed. 43, 1983 (2004).Search in Google Scholar

12. S. Kobayashi, K. Manabe, H. Ishitani, J. Matsuo. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformation, Vol. 4, D. Bellus, S. V. Ley, R.Noyori, M. Regitz, E. Schaumann, I. Shinkai, E. J. Thomas, B. M. Trost (Eds.), p. 317, Georg Thieme Verlag, Stuttgart (2002).Search in Google Scholar

13. (a) doi:10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J, T. D. Machajewski, C.-H. Wong. Angew. Chem., Int. Ed. 39, 1352 (2000);Search in Google Scholar

13. (b) E. M. Carreira. Comprehensive Asymmetric Catalysis, Vol.3, E. N. Jacobsen, A. Pflatz, H. Yamamoto (Eds.), p. 998, Springer, Heidelberg (1999);Search in Google Scholar

13. (c) doi:10.1016/S0957-4166(97)00634-4, S. G. Nelson. Tetrahedron: Asymmetry 9, 357 (1998).Search in Google Scholar

14. doi:10.1021/ja00831a019, Trioxane was used as a formaldehyde surrogate: T. Mukaiyama, K. Banno, K. Narasaka. J. Am. Chem. Soc. 96, 7503 (1974).Search in Google Scholar

15. (a) doi:10.1246/cl.1991.2187, S. Kobayashi. Chem. Lett. 2187 (1991);Search in Google Scholar

15. (b) doi:10.1016/S0040-4020(01)89795-7, A. Lubineau, E. Meyer. Tetrahedron 44, 6065 (1988).Search in Google Scholar

16. doi:10.1016/j.tet.2003.06.007, K. Manabe, S. Ishikawa, T. Hamada, S. Kobayashi. Tetrahedron 59, 10439 (2003).Search in Google Scholar

17. N. Ozawa, M. Wadamoto, K. Ishihara, H. Yamamoto. Synlett 2219 (2003).10.1055/s-2003-42089Search in Google Scholar

18. We performed the hydroxymethylation of 2 using 20 mol% of a Sc3+ source and 24 mol% of 1 in H2O/1,4-dioxane at 0 degC. As a result, Sc(OTf)3 and ScBr3 afforded almost the same results [Sc(OTf)3: 15 h, 86% yield, 84% ee; ScBr3: 22 h, 75% yield, 83% ee].Search in Google Scholar

19. (a) doi:10.1021/ja011983i, D. A. Evans, Z. K. Sweeney, T. Rovis, J. S. Tedrow. J. Am. Chem. Soc. 123, 12095 (2001);Search in Google Scholar

19. (b) doi:10.1021/ja036985c, D. A. Evans, K. A. Scheidt, K. R. Fandrick, H. W. Lam, J. Wu. J. Am. Chem. Soc. 125, 10780 (2003).Search in Google Scholar

20. (a) P. L. Baliri, G. Catelani, R. Giori, E. Mastrorilli. Enantiomer 3, 357 (1998);Search in Google Scholar

20. (b) doi:10.1016/S0957-4166(99)00304-3, H. Miyaoka, Y. Kajiwara, M. Hara, A. Suma, Y. Yamada. Tetrahedron: Asymmetry 10, 3189 (1999).Search in Google Scholar

21. (a) doi:10.1002/ejoc.200300754, H. Gaspard-Iloughmane, C. Le Roux. Eur. J. Org. Chem. 2517 (2004);Search in Google Scholar

21. (b) doi:10.1016/S0040-4039(01)02307-3, S. Repichet, A.Zwick, L. Vendier, C. Le Roux, J. Dubac. Tetrahedron Lett. 43, 993 (2002).Search in Google Scholar

22. doi:10.1016/S0040-4039(01)02307-3, S. Repichet, A. Zwick, L. Vendier, C. Le Roux, J. Dubac. Tetrahedron Lett. 43, 993 (2002).Search in Google Scholar

23. Sc(OTf)3 is a water-compatible Lewis acid, and it works well for hydroxymethylation even in the absence of a basic ligand. S. Kobayashi, I. Hachiya, H. Ishitani, M. Araki. Synlett 472 (1993).10.1055/s-1993-22495Search in Google Scholar

24. doi:10.1021/ol051965w, S. Kobayashi, T. Ogino, H. Shimizu, S. Ishikawa, T. Hamada, K. Manabe. Org. Lett. 7, 4729 (2005).Search in Google Scholar

25. The angle of O-Bi-O is 165deg, while that of O-Sc-O is 151deg. The torsional angle of two pyridines in the Bi complex is 27.0deg, and that in the Sc complex is 19.4deg. For the Sc complex, see ref. [13].Search in Google Scholar

26. (a) doi:10.1021/cr9500038, D. J. Ager, I.Prakash, D. R. Schaad. Chem. Rev. 96, 835 (1996);Search in Google Scholar

26. (b) doi:10.1016/S0040-4020(00)00149-6, S. C. Bergmeier. Tetrahedron 56, 2561 (2000);Search in Google Scholar

26. (c) doi:10.1021/ol050643p, M. Yamashita, K. Yamada, K. Tomioka. Org. Lett. 7, 2369 (2005);Search in Google Scholar

26. (d) H. C. Kolb, K.B. Sharpless. In Transition Metals for Organic Synthesis, M. Beller, C. Bolm, (Eds.), p. 243, Wiley-VCH, Weinheim (1998).10.1002/9783527619399.ch5fSearch in Google Scholar

27. (a) doi:10.1016/S0957-4166(98)00153-0, X. L. Hou, J. Wu, L. X. Dai, L. J. Xia, M. H. Tang. Tetrahedron: Asymmetry 9, 1747 (1998);Search in Google Scholar

27. (b) doi:10.1021/jo9900883, S. Sagawa, H. Abe, Y. Hase, T. Inaba. J. Org. Chem. 64, 4962 (1999);Search in Google Scholar

27. (c) doi:10.1016/S0040-4020(01)01088-2, A. Sekine, T.Ohshima, M. Shibasaki. Tetrahedron 58, 75 (2002);Search in Google Scholar

27. (d) doi:10.1002/anie.200460786, C. Schneider, A. R. Sreekanth, E. Mai. Angew. Chem., Int. Ed. 43, 5691 (2004);Search in Google Scholar

27. (e) doi:10.1021/ol0475360, F. Carree, R. Gil, J. Collin. Org. Lett. 7, 1023 (2005).Search in Google Scholar

28. doi:10.1021/ja001420r, K. Manabe, Y. Mori, T. Wakabayashi, W. Nagayama, S. Kobayashi. J. Am. Chem. Soc. 122, 7202 (2000).Search in Google Scholar

29. (a) doi:10.1021/ja984273u, S. Otto, J. B. F. N. Engberts. J. Am. Chem. Soc. 121, 6798 (1999);Search in Google Scholar

29. (b) doi:10.1002/1521-3765(20020916)8:18<4094::AID-CHEM4094>3.0.CO;2-G, K. Manabe, S.Kobayashi. Chem. Eur. J. 8, 4094 (2002);Search in Google Scholar

29. (c) doi:10.1002/adsc.200390040, D. Sinou, C. Rabeyrin, C. Nguefack. Adv. Synth. Catal. 345, 357 (2003);Search in Google Scholar

29. (d) doi:10.1021/ja048607t, T. Hamada, K. Manabe, S. Kobayashi. J. Am. Chem. Soc. 126, 7768 (2004).Search in Google Scholar

30. (a) doi:10.1039/b211697a, N. Iranpoor, H. Firouzabadi, M.Shekarize. Org. Biomol. Chem. 1, 724 (2003);Search in Google Scholar

30. (b) doi:10.1021/jo025983s, R. H. Fan, X. L. Hou. J. Org. Chem. 68, 726 (2003);Search in Google Scholar

30. (c) doi:10.1016/j.tetlet.2003.10.129, T. Ollevier, G. Lavie-Compain. Tetrahedron Lett. 45, 49 (2004).Search in Google Scholar

31. C. Ogawa, S. Azoulay, S. Kobayashi. Heterocycles 66, 201 (2005).10.3987/COM-05-S(K)75Search in Google Scholar

32. (a) doi:10.1021/cr980414z, S. Kobayashi, H. Ishitani. Chem. Rev. 99, 1069 (1999);Search in Google Scholar

32. (b) doi:10.1021/ar020137p, A. E. Taggi, A. M. Hafez, T. Lectka. Acc. Chem. Res. 36, 10 (2003);Search in Google Scholar

32. (c) S.Kobayashi, M. Ueno. In Comprehensive Asymmetric Catalysis, E. N. Jacobsen, A. Pfaltz, H.Yamamoto (Eds.), Supplement 1, Chap. 29.5, pp. 143-159, Springer, Berlin (2004).Search in Google Scholar

33. S. Kobayashi, K. Manabe, H. Ishitani, J. Matsuo. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations, Vol. 4, D. Bellus, S. V. Ley, R. Noyori, M. Regitz, E. Schauman, I. Shinkai, E. J. Thomas, B. M. Trost. (Eds.), pp. 317-369, Georg Thieme Verlag, Stuttgart (2002).Search in Google Scholar

34. (a) doi:10.1021/jo0347359, N. Wolfgang, F. Tanaka, S.-i. Watanabe, N. S. Chowdari, J. M. Turner, R.Thayumanavan, C. F. Barbas III. J. Org. Chem. 68, 9624 (2003);Search in Google Scholar

34. (b) doi:10.1002/ange.200460678, I. Ibrahem, J. Casas, A.Cordova. Angew. Chem. 116, 6690 (2004);Search in Google Scholar

34. (c) doi:10.1002/anie.200460678, I. Ibrahem, J. Casas, A. Cordova. Angew. Chem., Int. Ed. 43, 6528 (2004).Search in Google Scholar

35. doi:10.1021/ja026094p, S. Kobayashi, T. Hamada, K. Manabe. J. Am. Chem. Soc. 124, 5640 (2002).Search in Google Scholar

36. doi:10.1021/ja048607t, T. Hamada, K. Manabe, S. Kobayashi, J. Am. Chem. Soc. 126, 7768 (2004).Search in Google Scholar

37. (a) doi:10.1002/(SICI)1521-3757(19980420)110:8<1096::AID-ANGE1096>3.0.CO;2-Z, M. Arend, B. Westermann, N. Risch. Angew. Chem. 110, 1096 (1998);Search in Google Scholar

37. (b) doi:10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E, M. Arend, B. Westermann, N. Risch. Angew. Chem., Int. Ed. 37, 1044 (1998).Search in Google Scholar

38. doi:10.1021/ja00041a067, Burk reported catalytic asymmetric hydrogenations of N-acylhydrazones: M. J. Burk, J. E. Feaster. J. Am. Chem. Soc. 114, 6266 (1992).Search in Google Scholar

39. (a) doi:10.1055/s-1998-1638, H. Oyamada, S. Kobayashi. Synlett 249 (1998);Search in Google Scholar

39. (b) doi:10.1055/s-1999-2566, S. Kobayashi, K. Sugita, H. Oyamada, Synlett 138 (1999);Search in Google Scholar

39. (c) doi:10.1021/jo991009q, K. Manabe, H. Oyamada, K. Sugita, S. Kobayashi. J. Org. Chem. 64, 8054 (1999).Search in Google Scholar

40. doi:10.1246/cl.1998.1131, S. Kobayashi, Y. Hasegawa, H. Ishitani. Chem. Lett. 1131 (1998).Search in Google Scholar

41. "Hydrazine and its derivatives", in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 13, John Wiley, New York (1995).Search in Google Scholar

42. doi:10.1055/s-2001-15166, S. Kobayashi, T. Hamada, K. Manabe. Synlett 1140 (2001).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779020235/html
Scroll to top button