Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides

  • Erik Strandberg , Deniz Tiltak , Marco Ieronimo , Nathalie Kanithasen , Parvesh Wadhwani and Anne S. Ulrich

Abstract

The effect of C-terminal amidation on the antimicrobial and hemolytic activities of antimicrobial peptides was studied using three cationic peptides which form amphiphilic α-helices when bound to membranes. The natural antimicrobial peptide PGLa, the designer-made antibiotic MSI-103, and the cell-penetrating "model amphipathic peptide" (MAP) are all amidated in their original forms, and their biological activities were compared with the same sequences carrying a free C-terminus. It was found that, in general, a free COOH-terminus reduces both the antimicrobial activity and the hemolytic side effects of the peptides. The only exception was observed for MSI-103, whose antimicrobial activity was not decreased in the acid form. Having shown that the therapeutic index (TI) of this novel peptide is significantly higher than for the other tested peptides, with high antibiotic activity and little undesired effects, we suggest that it could be a useful starting point for further development of new peptide antibiotics.


Conference

International Symposium on Chemistry of Natural Products (ISCNP-25) and 5th International Conference on Biodiversity (ICOB-5), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, 25th, Kyoto, Japan, 2006-07-23–2006-07-28


References

1. R. E. Hancock, D. S. Chapple. Antimicrob. Agents Chemother. 43, 1317 (1999).10.1128/AAC.43.6.1317Search in Google Scholar

2. (a) doi:10.1111/j.0105-2896.2004.0124.x, P. Bulet, R. Stocklin, L. Menin. Immunol. Rev. 198, 169 (2004);Search in Google Scholar

2. (b) doi:10.1038/nrmicro1098, K. A. Brogden. Nat. Rev. Microbiol. 3, 238 (2005).Search in Google Scholar

3. doi:10.1046/j.1365-2796.2003.01228.x, H. G. Boman. J. Intern. Med. 254, 197 (2003).Search in Google Scholar

4. doi:10.1016/j.ijantimicag.2004.09.005, K. V. Reddy, R. D. Yedery, C. Aranha. Int. J. Antimicrob. Agents 24, 536 (2004).Search in Google Scholar

5. (a) doi:10.1016/0014-5793(90)81351-N, R. Bessalle, A. Kapitkovsky, A. Gorea, I. Shalit, M. Fridkin. FEBS Lett. 274, 151 (1990);Search in Google Scholar

5. (b) E. L. Merrifield, S. A. Mitchell, J. Ubach, H. G. Boman, D. Andreu, R. B. Merrifield. Int. J. Pept. Prot. Res. 46, 214 (1995);10.1111/j.1399-3011.1995.tb00592.xSearch in Google Scholar

5. (c) doi:10.1073/pnas.87.12.4761, D. Wade, A. Boman, B. Wahlin, C. M. Drain, D. Andreu, H. G. Boman, R. B. Merrifield. Proc. Natl. Acad. Sci. USA 87, 4761 (1990);Search in Google Scholar

5. (d) doi:10.1016/S0014-5793(00)01754-3, D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpelainen, H. Lankinen, P. Kuusela. FEBS Lett. 479, 6 (2000).Search in Google Scholar

6. doi:10.1016/S0005-2736(01)00429-1, M. Dathe, J. Meyer, M. Beyermann, B. Maul, C. Hoischen, M. Bienert. Biochim. Biophys. Acta 1558, 171 (2002).Search in Google Scholar

7. I. Zelezetsky, A. Tossi. Biochim. Biophys. Acta 1758, 1436 (2000).10.1016/j.bbamem.2006.03.021Search in Google Scholar PubMed

8. doi:10.1016/0014-5793(88)80077-2, H. C. Chen, J. H. Brown, J. L. Morell, C. M. Huang. FEBS Lett. 236, 462 (1988).Search in Google Scholar

9. doi:10.1046/j.1432-1033.2001.02494.x, A. Giangaspero, L. Sandri, A. Tossi. Eur. J. Biochem. 268, 5589 (2001).Search in Google Scholar

10. doi:10.1002/bip.360370206, W. L. Maloy, U. P. Kari. Biopolymers 37, 105 (1995).Search in Google Scholar

11. (a) J. H. Cuervo, B. Rodriguez, R. A. Houghten. Pept. Res. 1, 81-86 (1988);Search in Google Scholar

11. (b) J. E. Callaway, J.Lai, B. Haselbeck, M. Baltaian, S. P. Bonnesen, J. Weickmann, G. Wilcox, S. P. Lei. Antimicrob. Agents Chemother. 37, 1614 (1993);10.1128/AAC.37.8.1614Search in Google Scholar

11. (c) doi:10.1111/j.1432-1033.1996.0303n.x, Z. Oren, Y. Shai. Eur. J. Biochem. 237, 303 (1996).Search in Google Scholar

12. doi:10.1016/0014-5793(88)80027-9, E. Soravia, G. Martini, M. Zasloff. FEBS Lett. 228, 337 (1988).Search in Google Scholar

13. doi:10.1074/jbc.M102865200, J. Blazyk, R. Wiegand, J. Klein, J. Hammer, R. M. Epand, R. F. Epand, W. L. Maloy, U. P. Kari. J. Biol. Chem. 276, 27899 (2001).Search in Google Scholar

14. U. Langel. Cell-penetrating Peptides: Processes and Applications, CRC Press, Boca Raton, FL (2002).10.1201/9781420040777Search in Google Scholar

15. (a) doi:10.1529/biophysj.104.056424, R. W. Glaser, C. Sachse, U. H. N. Durr, S. Afonin, P. Wadhwani, E. Strandberg, A. S. Ulrich. Biophys. J. 88, 3392 (2005);Search in Google Scholar

15. (b) doi:10.1016/j.bbamem.2006.02.029, P. Tremouilhac, E. Strandberg, P. Wadhwani, A. S. Ulrich. Biochim. Biophys. Acta 1758, 1330 (2006).Search in Google Scholar

16. doi:10.1529/biophysj.105.073858, E. Strandberg, P. Wadhwani, P. Tremouilhac, U. H. N. Durr, A. S. Ulrich. Biophys. J. 90, 1676 (2006).Search in Google Scholar

17. doi:10.1074/jbc.M604759200, P. Tremouilhac, E. Strandberg, P. Wadhwani, A. S. Ulrich. J. Biol. Chem. 281, 32089 (2006).Search in Google Scholar

18. N. Kanithasen. "2H- and 19F-solid-state NMR studies of the antimicrobial peptide (KIAGKIA)3 in phospholipid bilayers", Diploma thesis. Institute of Organic Chemistry, University of Karlsruhe, Karlsruhe, Germany (2005).Search in Google Scholar

19. doi:10.1016/S0014-5793(01)02648-5, M. Dathe, H. Nikolenko, J. Meyer, M. Beyermann, M. Bienert. FEBS Lett. 501, 146 (2001).Search in Google Scholar

20. doi:10.1046/j.1432-1033.2002.03080.x, Z. Oren, J. Ramesh, D. Avrahami, N. Suryaprakash, Y. Shai, R. Jelinek. Eur. J. Biochem. 269, 3869 (2002).Search in Google Scholar

21. (a) doi:10.1016/S0014-5793(97)00055-0, M. Dathe, T. Wieprecht, H. Nikolenko, L. Handel, W. L. Maloy, D. L. MacDonald, M.Beyermann, M. Bienert. FEBS Lett. 403, 208 (1997);Search in Google Scholar

21. (b) doi:10.1074/jbc.274.19.13181, L. H. Kondejewski, M. Jelokhani-Niaraki, S. W. Farmer, B. Lix, C. M. Kay, B. D. Sykes, R. E. Hancock, R. S. Hodges. J. Biol. Chem. 274, 13181 (1999);Search in Google Scholar

21. (c) doi:10.1074/jbc.M413406200, Y. Chen, C. T. Mant, S. W. Farmer, R. E. Hancock, M. L. Vasil, R.S. Hodges. J. Biol. Chem. 280, 12316 (2005).Search in Google Scholar

22. doi:10.1016/j.jmr.2004.02.008, R. W. Glaser, C. Sachse, U. H. N. Durr, P. Wadhwani, A. S. Ulrich. J. Magn. Reson. 168, 153 (2004).Search in Google Scholar

23. G. B. Fields, R. L. Noble. Int. J. Pept. Protein Res. 35, 161 (1990).10.1111/j.1399-3011.1990.tb00939.xSearch in Google Scholar

24. (a) doi:10.1016/0005-2736(88)90047-8, T. Katsu, C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota, Y. Fujita. Biochim. Biophys. Acta 939, 57 (1988);Search in Google Scholar

24. (b) T. Tomita, D. Ishikawa, T. Noguchi, E. Katayama, Y. Hashimoto. Biochem. J. 333 (Pt. 1), 129 (1998);10.1042/bj3330129Search in Google Scholar PubMed PubMed Central

24. (c) doi:10.1016/j.bbamem.2003.08.010, O. S. Belokoneva, E. Villegas, G. Corzo, L. Dai, T. Nakajima. Biochim. Biophys. Acta 1617, 22 (2003);Search in Google Scholar

24. (d) doi:10.1074/jbc.M213209200, A. Yamaji-Hasegawa, A. Makino, T. Baba, Y. Senoh, H.Kimura-Suda, S. B. Sato, N. Terada, S. Ohno, E. Kiyokawa, M. Umeda, T. Kobayashi. J. Biol. Chem. 278, 22762 (2003);Search in Google Scholar

24. (e) doi:10.1021/jo051519m, P. Wadhwani, S. Afonin, M. Ieronimo, J. Buerck, A. S. Ulrich. J. Org. Chem. 71, 55 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779040717/html
Scroll to top button