Skip to content
Publicly Available Published by De Gruyter January 1, 2009

New development of photoinduced electron-transfer catalytic systems

  • Shunichi Fukuzumi

Abstract

As an alternative to conventional charge-separation functional molecular models based on multi-step long-range electron transfer (ET) within redox cascades, simple donor-acceptor dyads have been developed to attain a long-lived and high-energy charge-separated (CS) state without significant loss of excitation energy. In particular, a simple molecular electron donor-acceptor dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes), is capable of fast charge separation but extremely slow charge recombination. Such a simple molecular dyad has significant advantages with regard to synthetic feasibility, providing a variety of applications for photoinduced ET catalytic systems, including efficient photocatalytic systems for the solar energy conversion and construction of organic solar cells.


Conference

IUPAC International Conference on Physical Organic Chemistry (ICPOC-18), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 18th, Warsaw, Poland, 2006-08-20–2006-08-25


References

1. doi:10.1016/S0969-2126(94)00094-8, U. Ermler, G. Fritzsch, S. K. Buchanan, H. Michel. Structure 2, 925 (1994).Search in Google Scholar

2. doi:10.1126/science.245.4925.1463, J. Deisenhofer, H. Michel. Science 245, 1463 (1989).Search in Google Scholar

3. (a) doi:10.1021/ar00028a010, D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res. 26, 198 (1993);Search in Google Scholar

3. (b) doi:10.1021/ar9801301, D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res. 34, 40 (2001).Search in Google Scholar

4. doi:10.1021/cr00011a005, M. R. Wasielewski. Chem. Rev. 92, 435 (1992).Search in Google Scholar

5. (a) doi:10.1021/ar00037a003, M. N. Paddon-Row. Acc. Chem. Res. 17, 18 (1994);Search in Google Scholar

5. (b) doi:10.1021/cr00011a003, K. D. Jordan, M. N. Paddon-Row. Chem. Rev. 92, 395 (1992).Search in Google Scholar

6. doi:10.1039/a901205b, M.-J. Blanco, M. C. Jimenez, J.-C. Chambron, V. Heitz, M. Linke, J.-P. Sauvage. Chem. Soc. Rev. 28, 293 (1999).Search in Google Scholar

7. (a) S. Fukuzumi, H. Imahori. In Electron Transfer in Chemistry, Vol. 2, V. Balzani (Ed.), pp. 927-975, Wiley-VCH, Weinheim (2001);10.1002/9783527618248.ch31Search in Google Scholar

7. (b) S. Fukuzumi, D. M. Guldi. In Electron Transfer in Chemistry, Vol. 2, V. Balzani (Ed.), pp. 270-337, Wiley-VCH, Weinheim (2001).10.1002/9783527618248.ch19Search in Google Scholar

8. S. Fukuzumi, H. Imahori. In Photochemistry of Organic Molecules in Isotropic and Anisotropic Media, V. Ramamurthy, K. S. Schanze (Eds.), pp. 227-273, Marcel Dekker, New York (2003).Search in Google Scholar

9. D. M. Guldi, S. Fukuzumi. Fullerenes: From Synthesis to Optoelectronic Properties, D. M. Guldi, N. Martin (Eds.), pp. 237-265, Kluwer, Dordrecht (2003).10.1007/978-94-015-9902-3_8Search in Google Scholar

10. (a) doi:10.1039/b300053b, S. Fukuzumi. Org. Biomol. Chem. 1, 609 (2003);Search in Google Scholar

10. (b) doi:10.1246/bcsj.79.177, S. Fukuzumi. Bull. Chem. Soc. Jpn. 79, 177 (2006).Search in Google Scholar

11. doi:10.1021/ja003346i, H. Imahori, K. Tamaki, D. M. Guldi, C. Luo, M. Fujitsuka, O. Ito, Y. Sakata, S. Fukuzumi. J. Am. Chem. Soc. 123, 2607 (2001).Search in Google Scholar

12. doi:10.1021/ja004123v, H. Imahori, D. M. Guldi, K. Tamaki, Y. Yoshida, C. Luo, Y. Sakata, S. Fukuzumi. J. Am. Chem. Soc. 123, 6617 (2001).Search in Google Scholar

13. doi:10.1021/ja016655x, H. Imahori, K. Tamaki, Y. Araki, Y. Sekiguchi, O. Ito, Y. Sakata, S. Fukuzumi. J. Am. Chem. Soc. 124, 5165 (2002).Search in Google Scholar

14. doi:10.1021/ja002052u, S. Fukuzumi, H. Imahori, H. Yamada, M. E. El-Khouly, M. Fujitsuka, O. Ito, D. M. Guldi. J. Am. Chem. Soc. 123, 2571 (2001).Search in Google Scholar

15. doi:10.1002/chem.200305308, H. Imahori, Y. Sekiguchi, Y. Kashiwagi, T. Sato, Y. Araki, O. Ito, H. Yamada, S. Fukuzumi. Chem. Eur. J. 10, 3184 (2004).Search in Google Scholar

16. doi:10.1021/jp036382n, D. M. Guldi, H. Imahori, K. Tamaki, Y. Kashiwagi, H. Yamada, Y. Sakata, S. Fukuzumi. J. Phys. Chem. A 108, 541 (2004).Search in Google Scholar

17. doi:10.1002/anie.199311113, R. A. Marcus. Angew. Chem., Int. Ed. Engl. 32, 1111 (1993).Search in Google Scholar

18. doi:10.1021/ja015738a, S. Fukuzumi, K. Ohkubo, H. Imahori, J. Shao, Z. Ou, G. Zheng, Y. Chen, R. K. Pandey, M.Fujitsuka, O. Ito, K. M. Kadish. J. Am. Chem. Soc. 123, 10676 (2001).Search in Google Scholar

19. doi:10.1021/jp050352y, K. Okamoto, S. Fukuzumi. J. Phys. Chem. B 109,7713 (2005).Search in Google Scholar

20. doi:10.1021/ol0349256, Y. Kashiwagi, K. Ohkubo, J. A. McDonald, I. M. Blake, M. J. Crossley, Y. Araki, O. Ito, H.Imahori, S. Fukuzumi. Org. Lett. 5, 2719 (2003).Search in Google Scholar

21. doi:10.1002/chem.200305239, K. Okamoto, Y. Mori, H. Yamada, H. Imahori, S. Fukuzumi. Chem. Eur. J. 10, 474 (2004).Search in Google Scholar

22. doi:10.1039/b506412k, S. Fukuzumi, K. Ohkubo, J. Ortiz, A. M. Gutierrez, F. Fernandez-Lazarp, A. Sastre-Santos. Chem. Commun. 3814 (2005).Search in Google Scholar

23. doi:10.1021/ja037214b, S. Fukuzumi, K. Ohkubo, W. E. Z. Ou, J. Shao, K. M. Kadish, J. A. Hutchison, K. P. Ghiggino, P. J. Sintic, M. J. Crossley. J. Am. Chem. Soc. 125, 14984 (2003).Search in Google Scholar

24. doi:10.1021/jp026603+, K. Ohkubo, H. Imahori, J. Shao, Z. Ou, K. M. Kadish, Y. Chen, G. Zheng, R. K. Pandey, M. Fujitsuka, O. Ito, S. Fukuzumi. J. Phys. Chem. A 106, 10991 (2002).Search in Google Scholar

25. doi:10.1002/anie.200352870, K. Ohkubo, H. Kotani, J. Shao, Z. Ou, K. M. Kadish, G. Li, R. K. Pandey, M. Fujitsuka, O. Ito, H. Imahori, S. Fukuzumi. Angew. Chem., Int. Ed. 43, 853 (2004).Search in Google Scholar

26. (a) J.-M. Lehn. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim (1995);10.1002/3527607439Search in Google Scholar

26. (b) J. L. Sessler, B. Wang, S. L. Springs, C. T. Brown. In Comprehensive Supramolecular Chemistry, J. L. Atwood, J. E. D. Davies (Eds.), Elsevier, Oxford (1996).Search in Google Scholar

27. C. J. Chang, J. D. K. Brown, M. C. Y. Chang, E. A. Baker, D. G. Nocera. In Electron Transfer in Chemistry, Vol. 3, V. Balzani (Ed.), pp. 409-461, Wiley-VCH, Weinheim (2001).10.1002/9783527618248.ch41Search in Google Scholar

28. doi:10.1021/ja064678b, M. Tanaka, K. Ohkubo, C. P. Gros, R. Guilard, S. Fukuzumi. J. Am. Chem. Soc. 128, 14625 (2006).Search in Google Scholar

29. doi:10.1021/ja004311l, S. Fukuzumi, K. Ohkubo, T. Suenobu, K. Kato, M. Fujitsuka, O. Ito. J. Am. Chem. Soc. 123, 8459 (2001).Search in Google Scholar

30. doi:10.1021/ja038656q, S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, H. Lemmetyinen. J. Am. Chem. Soc. 126, 1600 (2004).Search in Google Scholar

31. H. Kotani, K. Ohkubo, S. Fukuzumi. Chem. Commun. 4520 (2005).Search in Google Scholar

32. doi:10.1002/anie.200301762, A. Harriman. Angew. Chem., Int. Ed. 43, 4985 (2004).Search in Google Scholar

33. (a) doi:10.1039/b501262g, A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, J. W. Verhoeven. Chem. Commun. 2701 (2005);Search in Google Scholar

33. (b) doi:10.1021/ja052967e, A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van Ramesdonk, M. M. Groeneveld, H. Zhang, J. W. Verhoeven. J. Am. Chem. Soc. 127, 16054 (2005).Search in Google Scholar

34. doi:10.1021/ja048353b, H. Kotani, K. Ohkubo, S. Fukuzumi. J. Am. Chem. Soc. 126, 15999 (2004).Search in Google Scholar

35. A. A. Frimer. Singlet Oxygen, Vol. 2: Reaction Modes and Products, Part I, CRC Press, Boca Raton (1985).Search in Google Scholar

36. doi:10.1021/ja00820a056, P. A. Burns, C. S. Foote. J. Am. Chem. Soc. 96, 4339 (1974).Search in Google Scholar

37. doi:10.1021/ol051696+, K. Ohkubo, T. Nanjo, S. Fukuzumi. Org. Lett. 7, 4265 (2005).Search in Google Scholar

38. doi:10.1246/bcsj.79.1489, K. Ohkubo, T. Nanjo, S. Fukuzumi. Bull. Chem. Soc. Jpn. 79, 1489 (2006).Search in Google Scholar

39. doi:10.1039/b601418f, K. Ohkubo, K. Yukimoto, S. Fukuzumi. Chem. Commun. 2504 (2006).Search in Google Scholar

40. doi:10.1021/jp065215v, H. Kotani, K. Ohkubo, Y. Takai, S. Fukuzumi. J. Phys. Chem. B 110, 24047 (2006).Search in Google Scholar

41. S. Fukuzumi, T. Tanaka. In Photoinduced Electron Transfer, M. A. Fox, M. Chanon (Eds.), Part C, Chap. 10, Elsevier, Amsterdam (1988).Search in Google Scholar

42. doi:10.1021/ja00236a003, S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka. J. Am. Chem. Soc. 109, 305 (1987).Search in Google Scholar

43. (a) doi:10.1021/cr00033a003, A. Hagfeldt, M. Gratzel. Chem. Rev. 95, 49 (1995);Search in Google Scholar

43. (b) doi:10.1021/ar980112j, A. Hagfeldt, M. Gratzel. Acc. Chem. Res. 33, 269 (2000);Search in Google Scholar

43. (c) doi:10.1038/35104607, M. Gratzel. Nature 414, 338 (2001).Search in Google Scholar

44. doi:10.1039/a803991g, C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan. Chem. Soc. Rev. 29, 87 (2000).Search in Google Scholar

45. doi:10.1021/ol048913b, T. Hasobe, S. Hattori, H. Kotani, K. Ohkubo, K. Hosomizu, H. Imahori, P. V. Kamat, S.Fukuzumi. Org. Lett. 6, 3103 (2004).Search in Google Scholar

46. doi:10.1039/b413336f, T. Hasobe, S. Hattori, P. V. Kamat, Y. Wada, S. Fukuzumi. J. Mater. Chem. 15, 372 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779060981/html
Scroll to top button